Yingming Xu , Kui Zhang , Jinlin Miao , Na Guo , Xianghui Fu , Fengfan Yang , Xing Luo , Junfeng Jia , Zhaohui Zheng , Ping Zhu
{"title":"CD147 regulates the formation and function of immune synapses","authors":"Yingming Xu , Kui Zhang , Jinlin Miao , Na Guo , Xianghui Fu , Fengfan Yang , Xing Luo , Junfeng Jia , Zhaohui Zheng , Ping Zhu","doi":"10.1016/j.cellimm.2024.104845","DOIUrl":null,"url":null,"abstract":"<div><p>CD147 is a T cell activation-associated molecule which is closely involved in the formation of the immune synapse (IS). However, the precise role of CD147 in T cell activation and IS formation remains unclear. In the present study, we demonstrated that CD147 translocated to the IS upon T cell activation and was primarily distributed in the peripheral super molecular cluster (p-SMAC). The knock down of CD147 expression in T cells, but not in B cells, impaired IS formation. CD147 participated in IS formation between T cells and different types of antigen-presenting cells (APCs), including macrophages and dendritic cells. Ligation of CD147 with its monoclonal antibody (mAb) HAb18 effectively inhibited T cell activation and IL-2 secretion. CD98, a critical molecule interacting with CD147, was distributed in IS in a CD147-dependent way. Phosphorylation levels of T cell receptor (TCR) related molecules, like ZAP-70, ERK, and cJun, were down-regulated by CD147 ligation, which is crucial for the interaction of CD147 and TCR signaling transduction. CD147 is indispensable for the formation of immune synapses and plays an important role in the regulation of its function.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0008874924000480/pdfft?md5=a7f39d5adf08f4e860ff8692af8f6d1e&pid=1-s2.0-S0008874924000480-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008874924000480","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CD147 is a T cell activation-associated molecule which is closely involved in the formation of the immune synapse (IS). However, the precise role of CD147 in T cell activation and IS formation remains unclear. In the present study, we demonstrated that CD147 translocated to the IS upon T cell activation and was primarily distributed in the peripheral super molecular cluster (p-SMAC). The knock down of CD147 expression in T cells, but not in B cells, impaired IS formation. CD147 participated in IS formation between T cells and different types of antigen-presenting cells (APCs), including macrophages and dendritic cells. Ligation of CD147 with its monoclonal antibody (mAb) HAb18 effectively inhibited T cell activation and IL-2 secretion. CD98, a critical molecule interacting with CD147, was distributed in IS in a CD147-dependent way. Phosphorylation levels of T cell receptor (TCR) related molecules, like ZAP-70, ERK, and cJun, were down-regulated by CD147 ligation, which is crucial for the interaction of CD147 and TCR signaling transduction. CD147 is indispensable for the formation of immune synapses and plays an important role in the regulation of its function.
CD147 是一种 T 细胞活化相关分子,与免疫突触(IS)的形成密切相关。然而,CD147 在 T 细胞活化和 IS 形成中的确切作用仍不清楚。在本研究中,我们证实了 CD147 在 T 细胞活化后会转位到 IS,并主要分布在外周超分子簇(p-SMAC)中。敲除 T 细胞中 CD147 的表达会阻碍 IS 的形成,但 B 细胞中 CD147 的表达则不会。CD147 参与了 T 细胞与不同类型的抗原递呈细胞(APC)(包括巨噬细胞和树突状细胞)之间的 IS 形成。将 CD147 与其单克隆抗体(mAb)HAb18 连接可有效抑制 T 细胞的活化和 IL-2 的分泌。CD98 是与 CD147 相互作用的关键分子,它在 IS 中的分布依赖于 CD147。T细胞受体(TCR)相关分子,如ZAP-70、ERK和cJun的磷酸化水平在CD147的作用下被下调,这对CD147与TCR信号转导的相互作用至关重要。CD147是免疫突触形成不可或缺的因素,并在其功能调控中发挥着重要作用。
期刊介绍:
Cellular Immunology publishes original investigations concerned with the immunological activities of cells in experimental or clinical situations. The scope of the journal encompasses the broad area of in vitro and in vivo studies of cellular immune responses. Purely clinical descriptive studies are not considered.
Research Areas include:
• Antigen receptor sites
• Autoimmunity
• Delayed-type hypersensitivity or cellular immunity
• Immunologic deficiency states and their reconstitution
• Immunologic surveillance and tumor immunity
• Immunomodulation
• Immunotherapy
• Lymphokines and cytokines
• Nonantibody immunity
• Parasite immunology
• Resistance to intracellular microbial and viral infection
• Thymus and lymphocyte immunobiology
• Transplantation immunology
• Tumor immunity.