Heme oxygenase 1 linked to inactivation of subchondral osteoclasts in osteoarthritis.

IF 4.7 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Zhejiang University SCIENCE B Pub Date : 2024-06-15 DOI:10.1631/jzus.B2300303
Miao Chu, Guangdong Chen, Kai Chen, Pengfei Zhu, Zhen Wang, Zhonglai Qian, Huaqiang Tao, Yaozeng Xu, Dechun Geng
{"title":"Heme oxygenase 1 linked to inactivation of subchondral osteoclasts in osteoarthritis.","authors":"Miao Chu, Guangdong Chen, Kai Chen, Pengfei Zhu, Zhen Wang, Zhonglai Qian, Huaqiang Tao, Yaozeng Xu, Dechun Geng","doi":"10.1631/jzus.B2300303","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is a chronic progressive osteoarthropathy in the elderly. Osteoclast activation plays a crucial role in the occurrence of subchondral bone loss in early OA. However, the specific mechanism of osteoclast differentiation in OA remains unclear. In our study, gene expression profiles related to OA disease progression and osteoclast activation were screened from the Gene Expression Omnibus (GEO) repository. GEO2R and Funrich analysis tools were employed to find differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that chemical carcinogenesis, reactive oxygen species (ROS), and response to oxidative stress were mainly involved in osteoclast differentiation in OA subchondral bone. Furthermore, fourteen DEGs that are associated with oxidative stress were identified. The first ranked differential gene, heme oxygenase 1 (<i>HMOX1</i>), was selected for further validation. Related results showed that osteoclast activation in the pathogenesis of OA subchondral bone is accompanied by the downregulation of <i>HMOX1</i>. Carnosol was revealed to inhibit osteoclastogenesis by targeting <i>HMOX1</i> and upregulating the expression of antioxidant protein in vitro. Meanwhile, carnosol was found to alleviate the severity of OA by inhibiting the activation of subchondral osteoclasts in vivo. Our research indicated that the activation of osteoclasts due to subchondral bone redox dysplasia may serve as a significant pathway for the advancement of OA. Targeting <i>HMOX1</i> in subchondral osteoclasts may offer novel insights for the treatment of early OA.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 6","pages":"513-528"},"PeriodicalIF":4.7000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199094/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University SCIENCE B","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1631/jzus.B2300303","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is a chronic progressive osteoarthropathy in the elderly. Osteoclast activation plays a crucial role in the occurrence of subchondral bone loss in early OA. However, the specific mechanism of osteoclast differentiation in OA remains unclear. In our study, gene expression profiles related to OA disease progression and osteoclast activation were screened from the Gene Expression Omnibus (GEO) repository. GEO2R and Funrich analysis tools were employed to find differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that chemical carcinogenesis, reactive oxygen species (ROS), and response to oxidative stress were mainly involved in osteoclast differentiation in OA subchondral bone. Furthermore, fourteen DEGs that are associated with oxidative stress were identified. The first ranked differential gene, heme oxygenase 1 (HMOX1), was selected for further validation. Related results showed that osteoclast activation in the pathogenesis of OA subchondral bone is accompanied by the downregulation of HMOX1. Carnosol was revealed to inhibit osteoclastogenesis by targeting HMOX1 and upregulating the expression of antioxidant protein in vitro. Meanwhile, carnosol was found to alleviate the severity of OA by inhibiting the activation of subchondral osteoclasts in vivo. Our research indicated that the activation of osteoclasts due to subchondral bone redox dysplasia may serve as a significant pathway for the advancement of OA. Targeting HMOX1 in subchondral osteoclasts may offer novel insights for the treatment of early OA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血红素加氧酶 1 与骨关节炎软骨下破骨细胞的失活有关。
骨关节炎(OA)是老年人的一种慢性进行性骨关节病。破骨细胞的活化在 OA 早期软骨下骨丢失的发生中起着至关重要的作用。然而,OA 中破骨细胞分化的具体机制仍不清楚。在我们的研究中,我们从基因表达总库(GEO)中筛选了与OA疾病进展和破骨细胞活化相关的基因表达谱。利用 GEO2R 和 Funrich 分析工具找到差异表达基因(DEGs)。基因本体(GO)和京都基因和基因组百科全书(KEGG)富集分析表明,化学致癌、活性氧(ROS)和对氧化应激的反应主要参与了OA软骨下骨的破骨细胞分化。此外,还发现了 14 个与氧化应激相关的 DEGs。排名第一的差异基因血红素加氧酶1(HMOX1)被选中进行进一步验证。相关结果显示,在 OA 软骨下骨的发病机制中,破骨细胞的激活伴随着 HMOX1 的下调。研究发现,卡诺醇通过靶向 HMOX1 和上调体外抗氧化蛋白的表达来抑制破骨细胞的生成。同时,研究还发现卡诺醇在体内可抑制软骨下破骨细胞的活化,从而减轻 OA 的严重程度。我们的研究表明,软骨下骨氧化还原发育不良导致的破骨细胞活化可能是导致OA恶化的重要途径。以软骨下破骨细胞中的HMOX1为靶点可能会为早期OA的治疗提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Zhejiang University SCIENCE B
Journal of Zhejiang University SCIENCE B 生物-生化与分子生物学
CiteScore
8.70
自引率
13.70%
发文量
2125
审稿时长
3.0 months
期刊介绍: Journal of Zheijang University SCIENCE B - Biomedicine & Biotechnology is an international journal that aims to present the latest development and achievements in scientific research in China and abroad to the world’s scientific community. JZUS-B covers research in Biomedicine and Biotechnology and Biochemistry and topics related to life science subjects, such as Plant and Animal Sciences, Environment and Resource etc.
期刊最新文献
ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis. Chronic exposure to hexavalent chromium induces esophageal tumorigenesis via activating the Notch signaling pathway. Artificial intelligence for brain disease diagnosis using electroencephalogram signals. Odor representation and coding by the mitral/tufted cells in the olfactory bulb. Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1