Song-Hyok Pak, Tae-Song Ri, Tong-Su Ho, Gyong-Song Kim, Hyok-Il Kim, Un-Hyang Ho
{"title":"Stress responsive ZmWRKY53 gene increases cold tolerance in rice.","authors":"Song-Hyok Pak, Tae-Song Ri, Tong-Su Ho, Gyong-Song Kim, Hyok-Il Kim, Un-Hyang Ho","doi":"10.1007/s11248-024-00386-w","DOIUrl":null,"url":null,"abstract":"<p><p>Plant WRKY transcription factors are responsible for biotic and abiotic stresses and play an important role in enhancing their adaptability. The AtWRKY33 is a gene that functions in response to abiotic stresses such as low temperature, drought, salinity, etc. In this study, a recombinant vector YG8198-ZmWRKY53 carrying the ZmWRKY53, an interspecific homolog of the dicotyledonous AtWRKY33, was transferred to rice plants by Agrobacterium mediated transformation. The ectopic expression of the ZmWRKY53 in transgenic rice plants conferred cold tolerance with a higher accumulation of free proline and water-soluble sugars, an increase in chlorophyll content, a decrease in electrolyte leakage rate and MDA levels compared to control plants. This result suggests that ZmWRKY53 may confer cold tolerance in rice.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-024-00386-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Plant WRKY transcription factors are responsible for biotic and abiotic stresses and play an important role in enhancing their adaptability. The AtWRKY33 is a gene that functions in response to abiotic stresses such as low temperature, drought, salinity, etc. In this study, a recombinant vector YG8198-ZmWRKY53 carrying the ZmWRKY53, an interspecific homolog of the dicotyledonous AtWRKY33, was transferred to rice plants by Agrobacterium mediated transformation. The ectopic expression of the ZmWRKY53 in transgenic rice plants conferred cold tolerance with a higher accumulation of free proline and water-soluble sugars, an increase in chlorophyll content, a decrease in electrolyte leakage rate and MDA levels compared to control plants. This result suggests that ZmWRKY53 may confer cold tolerance in rice.