Computational fluid dynamics in carbonate rock wormholes using magnetic resonance images as structural information

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2024-06-18 DOI:10.1016/j.acags.2024.100172
Gustavo Solcia, Bernd U. Foerster, Mariane B. Andreeta, Tito J. Bonagamba, Fernando F. Paiva
{"title":"Computational fluid dynamics in carbonate rock wormholes using magnetic resonance images as structural information","authors":"Gustavo Solcia,&nbsp;Bernd U. Foerster,&nbsp;Mariane B. Andreeta,&nbsp;Tito J. Bonagamba,&nbsp;Fernando F. Paiva","doi":"10.1016/j.acags.2024.100172","DOIUrl":null,"url":null,"abstract":"<div><p>Computational fluid dynamics (CFD) is an essential tool with growing applications in many fields. In petrophysics, it is common to use computed tomography in those simulations, but in medicine, magnetic resonance imaging (MRI) is also being used as a basis for structural information. Wormholes are high-permeability structures created by the acidification of carbonate reservoirs and can impact reservoir production. CFD combined with MRI can benefit the study of wormholes in petrophysics, but combining both techniques is still a challenge. The objective of this study is to develop a pipeline for performing CFD in wormholes with MRI data. Using three samples of carbonate rocks acidified with 1.5% hydrochloric acid at 0.1, 1, and 10 ml/min, we acquired <span><math><mrow><mn>300</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> resolution T2-weighted images and experimental measurements of pressure data within flow rates of 5 to 50 ml/min. We applied cropping, bias field correction, non-local means denoising, and segmentation in the image processing step. For the 3D reconstruction, we used marching cubes to generate the surface mesh, the Taubin filter for surface smoothing, and boundary modeling with Blender. Finally, for the CFD, we generated volumetric meshes with cfMesh and used the OpenFOAM simpleFoam solver to simulate an incompressible, stationary, and laminar flow. We analyzed the effect of surface smoothing, estimating edge displacements, and measured the simulation pressure at the same flow rates as the experiments. Surface smoothing had a negligible impact on the overall edge position. For most flow rates, the simulation and experimental pressure measurements matched. A possible reason for the discrepancies is that we did not consider the surrounding porous media in the simulations. In summary, our work had satisfactory results, demonstrating CFD’s feasibility in studying wormholes using MRI.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"23 ","pages":"Article 100172"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197424000193/pdfft?md5=059cc5ef82a79ca57be4db288a9600db&pid=1-s2.0-S2590197424000193-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Computational fluid dynamics (CFD) is an essential tool with growing applications in many fields. In petrophysics, it is common to use computed tomography in those simulations, but in medicine, magnetic resonance imaging (MRI) is also being used as a basis for structural information. Wormholes are high-permeability structures created by the acidification of carbonate reservoirs and can impact reservoir production. CFD combined with MRI can benefit the study of wormholes in petrophysics, but combining both techniques is still a challenge. The objective of this study is to develop a pipeline for performing CFD in wormholes with MRI data. Using three samples of carbonate rocks acidified with 1.5% hydrochloric acid at 0.1, 1, and 10 ml/min, we acquired 300μm resolution T2-weighted images and experimental measurements of pressure data within flow rates of 5 to 50 ml/min. We applied cropping, bias field correction, non-local means denoising, and segmentation in the image processing step. For the 3D reconstruction, we used marching cubes to generate the surface mesh, the Taubin filter for surface smoothing, and boundary modeling with Blender. Finally, for the CFD, we generated volumetric meshes with cfMesh and used the OpenFOAM simpleFoam solver to simulate an incompressible, stationary, and laminar flow. We analyzed the effect of surface smoothing, estimating edge displacements, and measured the simulation pressure at the same flow rates as the experiments. Surface smoothing had a negligible impact on the overall edge position. For most flow rates, the simulation and experimental pressure measurements matched. A possible reason for the discrepancies is that we did not consider the surrounding porous media in the simulations. In summary, our work had satisfactory results, demonstrating CFD’s feasibility in studying wormholes using MRI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用磁共振图像作为结构信息计算碳酸盐岩虫洞中的流体动力学
计算流体动力学(CFD)是一种重要工具,在许多领域的应用日益广泛。在岩石物理学中,这些模拟通常使用计算机断层扫描,但在医学中,磁共振成像(MRI)也被用作结构信息的基础。虫洞是碳酸盐岩储层酸化产生的高渗透性结构,会影响储层的生产。CFD 与 MRI 的结合有利于岩石物理学中的虫洞研究,但将这两种技术结合起来仍是一项挑战。本研究的目的是开发一种利用磁共振成像数据在虫洞中执行 CFD 的管道。我们使用三个碳酸盐岩样本,分别以 0.1、1 和 10 ml/min 的速度用 1.5% 盐酸酸化,获得了 300μm 分辨率的 T2 加权图像,并在 5 至 50 ml/min 的流速范围内对压力数据进行了实验测量。我们在图像处理步骤中应用了裁剪、偏场校正、非局部手段去噪和分割。在三维重建中,我们使用行进立方体生成表面网格,使用陶宾滤波器进行表面平滑处理,并使用 Blender 进行边界建模。最后,对于 CFD,我们使用 cfMesh 生成了体积网格,并使用 OpenFOAM simpleFoam 求解器模拟了不可压缩、静止和层流。我们分析了表面平滑的影响,估计了边缘位移,并在与实验相同的流速下测量了模拟压力。表面平滑对整体边缘位置的影响可以忽略不计。在大多数流速下,模拟压力测量值与实验压力测量值相吻合。出现差异的一个可能原因是我们在模拟中没有考虑周围的多孔介质。总之,我们的工作取得了令人满意的结果,证明了 CFD 在利用磁共振成像研究虫洞方面的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1