Arturo Montejo-Ráez , M. Dolores Molina-González , Salud María Jiménez-Zafra , Miguel Ángel García-Cumbreras , Luis Joaquín García-López
{"title":"A survey on detecting mental disorders with natural language processing: Literature review, trends and challenges","authors":"Arturo Montejo-Ráez , M. Dolores Molina-González , Salud María Jiménez-Zafra , Miguel Ángel García-Cumbreras , Luis Joaquín García-López","doi":"10.1016/j.cosrev.2024.100654","DOIUrl":null,"url":null,"abstract":"<div><p>For years, the scientific community has researched monitoring approaches for the detection of certain mental disorders and risky behaviors, like depression, eating disorders, gambling, and suicidal ideation among others, in order to activate prevention or mitigation strategies and, in severe cases, clinical treatment. Natural Language Processing is one of the most active disciplines dealing with the automatic detection of mental disorders. This paper offers a comprehensive and extensive review of research works on Natural Language Processing applied to the identification of some mental disorders. To this end, we have identified from a literature review, which are the main types of features used to represent the texts, the machine learning algorithms that are preferred or the most targeted social media platforms, among other aspects. Besides, the paper reports on scientific forums and projects focused on the automatic detection of these problems over the most popular social networks. Thus, this compilation provides a broad view of the matter, summarizing main strategies, and significant findings, but, also, recognizing some of the weaknesses in the research works published so far, serving as clues for future research.</p></div>","PeriodicalId":48633,"journal":{"name":"Computer Science Review","volume":"53 ","pages":"Article 100654"},"PeriodicalIF":13.3000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574013724000388/pdfft?md5=1aa9d3d86e8e2a92377e4b8afd982458&pid=1-s2.0-S1574013724000388-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science Review","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574013724000388","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
For years, the scientific community has researched monitoring approaches for the detection of certain mental disorders and risky behaviors, like depression, eating disorders, gambling, and suicidal ideation among others, in order to activate prevention or mitigation strategies and, in severe cases, clinical treatment. Natural Language Processing is one of the most active disciplines dealing with the automatic detection of mental disorders. This paper offers a comprehensive and extensive review of research works on Natural Language Processing applied to the identification of some mental disorders. To this end, we have identified from a literature review, which are the main types of features used to represent the texts, the machine learning algorithms that are preferred or the most targeted social media platforms, among other aspects. Besides, the paper reports on scientific forums and projects focused on the automatic detection of these problems over the most popular social networks. Thus, this compilation provides a broad view of the matter, summarizing main strategies, and significant findings, but, also, recognizing some of the weaknesses in the research works published so far, serving as clues for future research.
期刊介绍:
Computer Science Review, a publication dedicated to research surveys and expository overviews of open problems in computer science, targets a broad audience within the field seeking comprehensive insights into the latest developments. The journal welcomes articles from various fields as long as their content impacts the advancement of computer science. In particular, articles that review the application of well-known Computer Science methods to other areas are in scope only if these articles advance the fundamental understanding of those methods.