Philipp Haslinger, Stefan Nimmrichter and Dennis Rätzel
{"title":"Spin resonance spectroscopy with an electron microscope","authors":"Philipp Haslinger, Stefan Nimmrichter and Dennis Rätzel","doi":"10.1088/2058-9565/ad52bc","DOIUrl":null,"url":null,"abstract":"Coherent spin resonance methods, such as nuclear magnetic resonance and electron spin resonance spectroscopy, have led to spectrally highly sensitive, non-invasive quantum imaging techniques. Here, we propose a pump-probe spin resonance spectroscopy approach, designed for electron microscopy, based on microwave pump fields and electron probes. We investigate how quantum spin systems couple to electron matter waves through their magnetic moments and how the resulting phase shifts can be utilized to gain information about the states and dynamics of these systems. Notably, state-of-the-art transmission electron microscopy provides the means to detect phase shifts almost as small as that due to a single electron spin. This could enable state-selective observation of spin dynamics on the nanoscale and indirect measurement of the environment of the examined spin systems, providing information, for example, on the atomic structure, local chemical composition and neighboring spins.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"16 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad52bc","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Coherent spin resonance methods, such as nuclear magnetic resonance and electron spin resonance spectroscopy, have led to spectrally highly sensitive, non-invasive quantum imaging techniques. Here, we propose a pump-probe spin resonance spectroscopy approach, designed for electron microscopy, based on microwave pump fields and electron probes. We investigate how quantum spin systems couple to electron matter waves through their magnetic moments and how the resulting phase shifts can be utilized to gain information about the states and dynamics of these systems. Notably, state-of-the-art transmission electron microscopy provides the means to detect phase shifts almost as small as that due to a single electron spin. This could enable state-selective observation of spin dynamics on the nanoscale and indirect measurement of the environment of the examined spin systems, providing information, for example, on the atomic structure, local chemical composition and neighboring spins.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.