Molecular Characterization and Phylogenetic analyses of Rotaviruses Circulating in Municipal Sewage and Sewage-Polluted River Waters in Durban Area, South Africa
Cornelius Arome Omatola, Ademola Olufolahan Olaniran
{"title":"Molecular Characterization and Phylogenetic analyses of Rotaviruses Circulating in Municipal Sewage and Sewage-Polluted River Waters in Durban Area, South Africa","authors":"Cornelius Arome Omatola, Ademola Olufolahan Olaniran","doi":"10.1007/s12560-024-09598-z","DOIUrl":null,"url":null,"abstract":"<div><p>Globally, rotavirus continues to be the leading etiology of severe pediatric gastroenteritis, and transmission of the disease via environmental reservoirs has become an emerging concern in developing countries. From August to October 2021, a total of 69 samples comprising 48 of raw and treated sewage, and 21 surface waters, were collected from four Durban wastewater treatment plants (DWWTP), and effluent receiving rivers, respectively. Rotaviruses recovered and identified from the samples were subjected to sequencing, genotyping, and phylogenetic analysis. Of the 65 (94.2%) rotavirus-positive samples, 33.3% were from raw sewage, 16% from activated sludge, 15.9% from final effluents, and 29.0% were from the receiving river samples. A total of 49 G and 41 P genotypes were detected in sewage while 15 G and 22 P genotypes were detected in river samples. G1 genotype predominated in sewage (24.5%) followed by G3 (22.4%), G2 (14.3%), G4 (12.2%), G12 (10.2%), G9 (8.2%), and G8 (6.1%). Similarly, G1 predominated in river water samples (33.3%) and was followed by G2, G4 (20.0% each), G3, and G12 (13.3% each). Rotavirus VP4 genotypes P[4], P[6], and P[8] accounted for 36.6%, 29.3%, and 9.8%, respectively, in sewage. Correspondingly, 45.5%, 31.8%, and 13.6% were detected in river samples. The G and P genotypes not identified by the methods used were 2.1% versus 24.3% and 0.1% versus 9.1% for sewage and river water samples, respectively. Sequence comparison studies indicated a high level of nucleotide identity in the G1, G2, G3, G4, G8 VP7, and P[4], P[6], and P[8] VP4 gene sequences between strains from the environment and those from patients in the region. This is the first environmental-based study on the G and P genotypes diversity of rotavirus in municipal wastewater and their receiving rivers in this geographical region. The high similarity between environmental and clinical rotavirus strains suggests both local circulation of the virus and potential exposure risks. In addition, it highlights the usefulness of sewage surveillance as an additional tool for an epidemiological investigation, especially in populations that include individuals with subclinical or asymptomatic infections that are precluded in case-based studies.</p></div>","PeriodicalId":563,"journal":{"name":"Food and Environmental Virology","volume":"16 3","pages":"363 - 379"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422280/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Environmental Virology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12560-024-09598-z","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Globally, rotavirus continues to be the leading etiology of severe pediatric gastroenteritis, and transmission of the disease via environmental reservoirs has become an emerging concern in developing countries. From August to October 2021, a total of 69 samples comprising 48 of raw and treated sewage, and 21 surface waters, were collected from four Durban wastewater treatment plants (DWWTP), and effluent receiving rivers, respectively. Rotaviruses recovered and identified from the samples were subjected to sequencing, genotyping, and phylogenetic analysis. Of the 65 (94.2%) rotavirus-positive samples, 33.3% were from raw sewage, 16% from activated sludge, 15.9% from final effluents, and 29.0% were from the receiving river samples. A total of 49 G and 41 P genotypes were detected in sewage while 15 G and 22 P genotypes were detected in river samples. G1 genotype predominated in sewage (24.5%) followed by G3 (22.4%), G2 (14.3%), G4 (12.2%), G12 (10.2%), G9 (8.2%), and G8 (6.1%). Similarly, G1 predominated in river water samples (33.3%) and was followed by G2, G4 (20.0% each), G3, and G12 (13.3% each). Rotavirus VP4 genotypes P[4], P[6], and P[8] accounted for 36.6%, 29.3%, and 9.8%, respectively, in sewage. Correspondingly, 45.5%, 31.8%, and 13.6% were detected in river samples. The G and P genotypes not identified by the methods used were 2.1% versus 24.3% and 0.1% versus 9.1% for sewage and river water samples, respectively. Sequence comparison studies indicated a high level of nucleotide identity in the G1, G2, G3, G4, G8 VP7, and P[4], P[6], and P[8] VP4 gene sequences between strains from the environment and those from patients in the region. This is the first environmental-based study on the G and P genotypes diversity of rotavirus in municipal wastewater and their receiving rivers in this geographical region. The high similarity between environmental and clinical rotavirus strains suggests both local circulation of the virus and potential exposure risks. In addition, it highlights the usefulness of sewage surveillance as an additional tool for an epidemiological investigation, especially in populations that include individuals with subclinical or asymptomatic infections that are precluded in case-based studies.
期刊介绍:
Food and Environmental Virology publishes original articles, notes and review articles on any aspect relating to the transmission of pathogenic viruses via the environment (water, air, soil etc.) and foods. This includes epidemiological studies, identification of novel or emerging pathogens, methods of analysis or characterisation, studies on survival and elimination, and development of procedural controls for industrial processes, e.g. HACCP plans. The journal will cover all aspects of this important area, and encompass studies on any human, animal, and plant pathogenic virus which is capable of transmission via the environment or food.