Khalid Usman, Fangping Wan, Dan Zhao, Jian Peng, Jianyang Zeng
{"title":"Analyzing Large-Scale Single-Cell RNA-Seq Data Using Coreset.","authors":"Khalid Usman, Fangping Wan, Dan Zhao, Jian Peng, Jianyang Zeng","doi":"10.1109/TCBB.2024.3418078","DOIUrl":null,"url":null,"abstract":"<p><p>The recent boom in single-cell sequencing technologies provides valuable insights into the transcriptomes of individual cells. Through single-cell data analyses, a number of biological discoveries, such as novel cell types, developmental cell lineage trajectories, and gene regulatory networks, have been uncovered. However, the massive and increasingly accumulated single-cell datasets have also posed a seriously computational and analytical challenge for researchers. To address this issue, one typically applies dimensionality reduction approaches to reduce the large-scale datasets. However, these approaches are generally computationally infeasible for tall matrices. In addition, the downstream data analysis tasks such as clustering still take a large time complexity even on the dimension-reduced datasets. We present single-cell Coreset (scCoreset), a data summarization framework that extracts a small weighted subset of cells from a huge sparse single-cell RNA-seq data to facilitate the downstream data analysis tasks. Single-cell data analyses run on the extracted subset yield similar results to those derived from the original uncompressed data. Tests on various single-cell datasets show that scCoreset outperforms the existing data summarization approaches for common downstream tasks such as visualization and clustering. We believe that scCoreset can serve as a useful plug-in tool to improve the efficiency of current single-cell RNA-seq data analyses.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3418078","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The recent boom in single-cell sequencing technologies provides valuable insights into the transcriptomes of individual cells. Through single-cell data analyses, a number of biological discoveries, such as novel cell types, developmental cell lineage trajectories, and gene regulatory networks, have been uncovered. However, the massive and increasingly accumulated single-cell datasets have also posed a seriously computational and analytical challenge for researchers. To address this issue, one typically applies dimensionality reduction approaches to reduce the large-scale datasets. However, these approaches are generally computationally infeasible for tall matrices. In addition, the downstream data analysis tasks such as clustering still take a large time complexity even on the dimension-reduced datasets. We present single-cell Coreset (scCoreset), a data summarization framework that extracts a small weighted subset of cells from a huge sparse single-cell RNA-seq data to facilitate the downstream data analysis tasks. Single-cell data analyses run on the extracted subset yield similar results to those derived from the original uncompressed data. Tests on various single-cell datasets show that scCoreset outperforms the existing data summarization approaches for common downstream tasks such as visualization and clustering. We believe that scCoreset can serve as a useful plug-in tool to improve the efficiency of current single-cell RNA-seq data analyses.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system