CellsFromSpace: a fast, accurate, and reference-free tool to deconvolve and annotate spatially distributed omics data.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-05-30 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae081
Corentin Thuilliez, Gaël Moquin-Beaudry, Pierre Khneisser, Maria Eugenia Marques Da Costa, Slim Karkar, Hanane Boudhouche, Damien Drubay, Baptiste Audinot, Birgit Geoerger, Jean-Yves Scoazec, Nathalie Gaspar, Antonin Marchais
{"title":"CellsFromSpace: a fast, accurate, and reference-free tool to deconvolve and annotate spatially distributed omics data.","authors":"Corentin Thuilliez, Gaël Moquin-Beaudry, Pierre Khneisser, Maria Eugenia Marques Da Costa, Slim Karkar, Hanane Boudhouche, Damien Drubay, Baptiste Audinot, Birgit Geoerger, Jean-Yves Scoazec, Nathalie Gaspar, Antonin Marchais","doi":"10.1093/bioadv/vbae081","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Spatial transcriptomics enables the analysis of cell crosstalk in healthy and diseased organs by capturing the transcriptomic profiles of millions of cells within their spatial contexts. However, spatial transcriptomics approaches also raise new computational challenges for the multidimensional data analysis associated with spatial coordinates.</p><p><strong>Results: </strong>In this context, we introduce a novel analytical framework called CellsFromSpace based on independent component analysis (ICA), which allows users to analyze various commercially available technologies without relying on a single-cell reference dataset. The ICA approach deployed in CellsFromSpace decomposes spatial transcriptomics data into interpretable components associated with distinct cell types or activities. ICA also enables noise or artifact reduction and subset analysis of cell types of interest through component selection. We demonstrate the flexibility and performance of CellsFromSpace using real-world samples to demonstrate ICA's ability to successfully identify spatially distributed cells as well as rare diffuse cells, and quantitatively deconvolute datasets from the Visium, Slide-seq, MERSCOPE, and CosMX technologies. Comparative analysis with a current alternative reference-free deconvolution tool also highlights CellsFromSpace's speed, scalability and accuracy in processing complex, even multisample datasets. CellsFromSpace also offers a user-friendly graphical interface enabling non-bioinformaticians to annotate and interpret components based on spatial distribution and contributor genes, and perform full downstream analysis.</p><p><strong>Availability and implementation: </strong>CellsFromSpace (CFS) is distributed as an R package available from github at https://github.com/gustaveroussy/CFS along with tutorials, examples, and detailed documentation.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae081"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Spatial transcriptomics enables the analysis of cell crosstalk in healthy and diseased organs by capturing the transcriptomic profiles of millions of cells within their spatial contexts. However, spatial transcriptomics approaches also raise new computational challenges for the multidimensional data analysis associated with spatial coordinates.

Results: In this context, we introduce a novel analytical framework called CellsFromSpace based on independent component analysis (ICA), which allows users to analyze various commercially available technologies without relying on a single-cell reference dataset. The ICA approach deployed in CellsFromSpace decomposes spatial transcriptomics data into interpretable components associated with distinct cell types or activities. ICA also enables noise or artifact reduction and subset analysis of cell types of interest through component selection. We demonstrate the flexibility and performance of CellsFromSpace using real-world samples to demonstrate ICA's ability to successfully identify spatially distributed cells as well as rare diffuse cells, and quantitatively deconvolute datasets from the Visium, Slide-seq, MERSCOPE, and CosMX technologies. Comparative analysis with a current alternative reference-free deconvolution tool also highlights CellsFromSpace's speed, scalability and accuracy in processing complex, even multisample datasets. CellsFromSpace also offers a user-friendly graphical interface enabling non-bioinformaticians to annotate and interpret components based on spatial distribution and contributor genes, and perform full downstream analysis.

Availability and implementation: CellsFromSpace (CFS) is distributed as an R package available from github at https://github.com/gustaveroussy/CFS along with tutorials, examples, and detailed documentation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CellsFromSpace:一种快速、准确、无参考文献的工具,用于对空间分布的 omics 数据进行解卷积和注释。
动机空间转录组学通过捕捉数百万个细胞在其空间环境中的转录组特征,能够分析健康和患病器官中的细胞串扰。然而,空间转录组学方法也对与空间坐标相关的多维数据分析提出了新的计算挑战:在此背景下,我们推出了一种基于独立成分分析(ICA)的新型分析框架 CellsFromSpace,它允许用户在不依赖单细胞参考数据集的情况下分析各种商用技术。CellsFromSpace 中采用的 ICA 方法可将空间转录组学数据分解为与不同细胞类型或活动相关的可解释成分。ICA 还能减少噪音或伪影,并通过选择成分对感兴趣的细胞类型进行子集分析。我们利用真实世界的样本展示了 CellsFromSpace 的灵活性和性能,证明 ICA 能够成功识别空间分布的细胞以及罕见的弥散细胞,并对 Visium、Slide-seq、MERSCOPE 和 CosMX 技术的数据集进行定量解旋。与目前其他无参照解卷积工具的对比分析也凸显了 CellsFromSpace 在处理复杂甚至多样本数据集方面的速度、可扩展性和准确性。CellsFromSpace 还提供用户友好型图形界面,使非生物信息学家也能根据空间分布和贡献基因注释和解释成分,并进行全面的下游分析:CellsFromSpace(CFS)以 R 软件包的形式发布,可在 github 上获取 https://github.com/gustaveroussy/CFS 以及教程、示例和详细文档。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
The combined focal loss and dice loss function improves the segmentation of beta-sheets in medium-resolution cryo-electron-microscopy density maps. MultiOmicsIntegrator: a nextflow pipeline for integrated omics analyses. mxfda: a comprehensive toolkit for functional data analysis of single-cell spatial data. Conditional flux balance analysis toolbox for python: application to research metabolism in cyclic environments. LUKB: preparing local UK Biobank data for analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1