REM-U-Net: Deep Learning Based Agile REM Prediction With Energy-Efficient Cell-Free Use Case

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of signal processing Pub Date : 2024-03-18 DOI:10.1109/OJSP.2024.3378591
Hazem Sallouha;Shamik Sarkar;Enes Krijestorac;Danijela Cabric
{"title":"REM-U-Net: Deep Learning Based Agile REM Prediction With Energy-Efficient Cell-Free Use Case","authors":"Hazem Sallouha;Shamik Sarkar;Enes Krijestorac;Danijela Cabric","doi":"10.1109/OJSP.2024.3378591","DOIUrl":null,"url":null,"abstract":"Radio environment maps (REMs) hold a central role in optimizing wireless network deployment, enhancing network performance, and ensuring effective spectrum management. Conventional REM prediction methods are either excessively time-consuming, e.g., ray tracing, or inaccurate, e.g., statistical models, limiting their adoption in modern inherently dynamic wireless networks. Deep learning-based REM prediction has recently attracted considerable attention as an appealing, accurate, and time-efficient alternative. However, existing works on REM prediction using deep learning are either confined to 2D maps or use a relatively small dataset. In this paper, we introduce a runtime-efficient REM prediction framework based on U-Nets, trained on a large-scale 3D maps dataset. In addition, data preprocessing steps are investigated to further refine the REM prediction accuracy. The proposed U-Net framework, along with preprocessing steps, are evaluated in the context of \n<italic>the 2023 IEEE ICASSP Signal Processing Grand Challenge, namely, the First Pathloss Radio Map Prediction Challenge</i>\n. The evaluation results demonstrate that the proposed method achieves an average normalized root-mean-square error (RMSE) of 0.045 with an average of 14 milliseconds (ms) runtime. Finally, we position our achieved REM prediction accuracy in the context of a relevant cell-free massive multiple-input multiple-output (CF-mMIMO) use case. We demonstrate that one can obviate consuming energy on large-scale fading (LSF) measurements and rely on predicted REM instead to decide which sleep access points (APs) to switch on in a CF-mMIMO network that adopts a minimum propagation loss AP switch ON/OFF strategy.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"750-765"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10474197","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10474197/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Radio environment maps (REMs) hold a central role in optimizing wireless network deployment, enhancing network performance, and ensuring effective spectrum management. Conventional REM prediction methods are either excessively time-consuming, e.g., ray tracing, or inaccurate, e.g., statistical models, limiting their adoption in modern inherently dynamic wireless networks. Deep learning-based REM prediction has recently attracted considerable attention as an appealing, accurate, and time-efficient alternative. However, existing works on REM prediction using deep learning are either confined to 2D maps or use a relatively small dataset. In this paper, we introduce a runtime-efficient REM prediction framework based on U-Nets, trained on a large-scale 3D maps dataset. In addition, data preprocessing steps are investigated to further refine the REM prediction accuracy. The proposed U-Net framework, along with preprocessing steps, are evaluated in the context of the 2023 IEEE ICASSP Signal Processing Grand Challenge, namely, the First Pathloss Radio Map Prediction Challenge . The evaluation results demonstrate that the proposed method achieves an average normalized root-mean-square error (RMSE) of 0.045 with an average of 14 milliseconds (ms) runtime. Finally, we position our achieved REM prediction accuracy in the context of a relevant cell-free massive multiple-input multiple-output (CF-mMIMO) use case. We demonstrate that one can obviate consuming energy on large-scale fading (LSF) measurements and rely on predicted REM instead to decide which sleep access points (APs) to switch on in a CF-mMIMO network that adopts a minimum propagation loss AP switch ON/OFF strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
REM-U-Net:基于深度学习的敏捷 REM 预测与高能效无小区用例
无线电环境图(REM)在优化无线网络部署、提高网络性能和确保有效的频谱管理方面发挥着核心作用。传统的 REM 预测方法要么过于耗时(如光线跟踪),要么不准确(如统计模型),限制了它们在现代动态无线网络中的应用。基于深度学习的 REM 预测作为一种有吸引力、准确且省时的替代方法,最近引起了广泛关注。然而,利用深度学习进行 REM 预测的现有工作要么局限于二维地图,要么使用相对较小的数据集。在本文中,我们介绍了一种基于 U-Nets 的运行时间高效的 REM 预测框架,该框架在大规模三维地图数据集上进行了训练。此外,我们还研究了数据预处理步骤,以进一步提高 REM 预测的准确性。在 2023 年 IEEE ICASSP 信号处理大挑战赛(即首届路径损耗无线电地图预测挑战赛)的背景下,对所提出的 U-Net 框架和预处理步骤进行了评估。评估结果表明,所提方法的平均归一化均方根误差 (RMSE) 为 0.045,平均运行时间为 14 毫秒 (ms)。最后,我们将所实现的 REM 预测准确性与相关的无蜂窝大规模多输入多输出(CF-mMIMO)用例相结合。我们证明,在采用最小传播损耗接入点开关策略的 CF-mMIMO 网络中,可以避免在大规模衰落(LSF)测量上消耗能量,而是依靠预测的 REM 来决定开启哪些睡眠接入点(AP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
期刊最新文献
Correction to “Energy Efficient Signal Detection Using SPRT and Ordered Transmissions in Wireless Sensor Networks” List of Reviewers Charbonnier Quasi Hyperbolic Momentum Spline Based Incremental Strategy for Nonlinear Distributed Active Noise Control Iterative Sparse Identification of Nonlinear Dynamics JEP-KD: Joint-Embedding Predictive Architecture Based Knowledge Distillation for Visual Speech Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1