Sea-Wave: Speech Envelope Reconstruction From Auditory EEG With an Adapted WaveNet

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of signal processing Pub Date : 2024-03-18 DOI:10.1109/OJSP.2024.3378594
Liuyin Yang;Bob Van Dyck;Marc M. Van Hulle
{"title":"Sea-Wave: Speech Envelope Reconstruction From Auditory EEG With an Adapted WaveNet","authors":"Liuyin Yang;Bob Van Dyck;Marc M. Van Hulle","doi":"10.1109/OJSP.2024.3378594","DOIUrl":null,"url":null,"abstract":"Speech envelope reconstruction from EEG is shown to bear clinical potential to assess speech intelligibility. Linear models are commonly used to this end, but they have recently been outperformed in reconstruction scores by non-linear deep neural networks, particularly by dilated convolutional networks. This study presents Sea-Wave, a WaveNet-based architecture for speech envelope reconstruction that outperforms the state-of-the-art model. Our model is an extension of our submission for the Auditory EEG Challenge of the ICASSP Signal Processing Grand Challenge 2023. We improve upon our prior work by evaluating model components and hyperparameters through an ablation study and hyperparameter search, respectively. Our best subject-independent model achieves a Pearson correlation of 22.58% on seen and 11.58% on unseen subjects. After subject-specific fine-tuning, we find an average relative improvement of 30% for the seen subjects and a Pearson correlation of 56.57% for the best seen subject.Finally, we explore several model visualizations to obtain a better understanding of the model, the differences across subjects and the EEG features that relate to auditory perception.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"686-699"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10474194","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10474194/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Speech envelope reconstruction from EEG is shown to bear clinical potential to assess speech intelligibility. Linear models are commonly used to this end, but they have recently been outperformed in reconstruction scores by non-linear deep neural networks, particularly by dilated convolutional networks. This study presents Sea-Wave, a WaveNet-based architecture for speech envelope reconstruction that outperforms the state-of-the-art model. Our model is an extension of our submission for the Auditory EEG Challenge of the ICASSP Signal Processing Grand Challenge 2023. We improve upon our prior work by evaluating model components and hyperparameters through an ablation study and hyperparameter search, respectively. Our best subject-independent model achieves a Pearson correlation of 22.58% on seen and 11.58% on unseen subjects. After subject-specific fine-tuning, we find an average relative improvement of 30% for the seen subjects and a Pearson correlation of 56.57% for the best seen subject.Finally, we explore several model visualizations to obtain a better understanding of the model, the differences across subjects and the EEG features that relate to auditory perception.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海浪:利用改编波网从听觉脑电图重建语音包络
脑电图的语音包络重建被证明具有评估语音清晰度的临床潜力。线性模型通常用于此目的,但最近非线性深度神经网络,特别是扩张卷积网络的重建得分超过了线性模型。本研究介绍了 Sea-Wave,这是一种基于 WaveNet 的语音包络重构架构,其性能优于最先进的模型。我们的模型是我们提交的 2023 年 ICASSP 信号处理大挑战赛听觉脑电图挑战的扩展。我们通过消融研究和超参数搜索分别评估了模型组件和超参数,从而改进了之前的工作。我们的最佳受试者无关模型在可见受试者身上实现了 22.58% 的皮尔逊相关性,在未见受试者身上实现了 11.58% 的皮尔逊相关性。最后,我们探索了几种模型可视化方法,以便更好地理解模型、不同受试者之间的差异以及与听觉感知相关的脑电图特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
期刊最新文献
Iterative Sparse Identification of Nonlinear Dynamics Energy Efficient Signal Detection Using SPRT and Ordered Transmissions in Wireless Sensor Networks Robust Estimation of the Covariance Matrix From Data With Outliers Dynamic Sensor Placement Based on Sampling Theory for Graph Signals Adversarial Training for Jamming-Robust Channel Estimation in OFDM Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1