Lightweight, Multi-Speaker, Multi-Lingual Indic Text-to-Speech

IF 2.7 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of signal processing Pub Date : 2024-03-25 DOI:10.1109/OJSP.2024.3379092
Abhayjeet Singh;Amala Nagireddi;Anjali Jayakumar;Deekshitha G;Jesuraja Bandekar;Roopa R;Sandhya Badiger;Sathvik Udupa;Saurabh Kumar;Prasanta Kumar Ghosh;Hema A Murthy;Heiga Zen;Pranaw Kumar;Kamal Kant;Amol Bole;Bira Chandra Singh;Keiichi Tokuda;Mark Hasegawa-Johnson;Philipp Olbrich
{"title":"Lightweight, Multi-Speaker, Multi-Lingual Indic Text-to-Speech","authors":"Abhayjeet Singh;Amala Nagireddi;Anjali Jayakumar;Deekshitha G;Jesuraja Bandekar;Roopa R;Sandhya Badiger;Sathvik Udupa;Saurabh Kumar;Prasanta Kumar Ghosh;Hema A Murthy;Heiga Zen;Pranaw Kumar;Kamal Kant;Amol Bole;Bira Chandra Singh;Keiichi Tokuda;Mark Hasegawa-Johnson;Philipp Olbrich","doi":"10.1109/OJSP.2024.3379092","DOIUrl":null,"url":null,"abstract":"The Lightweight, Multi-speaker, Multi-lingual Indic Text-to-Speech (LIMMITS'23) challenge is organized as part of the ICASSP 2023 Signal Processing Grand Challenge. LIMMITS'23 aims at the development of a lightweight, multi-speaker, multi-lingual Text to Speech (TTS) model using datasets in Marathi, Hindi, and Telugu, with at least 40 hours of data released for each of the male and female voice artists in each language. The challenge encourages the advancement of TTS in Indian Languages as well as the development of techniques involved in TTS data selection and model compression. The 3 tracks of LIMMITS'23 have provided an opportunity for various researchers and practitioners around the world to explore the state-of-the-art techniques in TTS research.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"790-798"},"PeriodicalIF":2.7000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10479171","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10479171/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Lightweight, Multi-speaker, Multi-lingual Indic Text-to-Speech (LIMMITS'23) challenge is organized as part of the ICASSP 2023 Signal Processing Grand Challenge. LIMMITS'23 aims at the development of a lightweight, multi-speaker, multi-lingual Text to Speech (TTS) model using datasets in Marathi, Hindi, and Telugu, with at least 40 hours of data released for each of the male and female voice artists in each language. The challenge encourages the advancement of TTS in Indian Languages as well as the development of techniques involved in TTS data selection and model compression. The 3 tracks of LIMMITS'23 have provided an opportunity for various researchers and practitioners around the world to explore the state-of-the-art techniques in TTS research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轻量级、多扬声器、多语言 Indic 文本到语音技术
轻量级、多扬声器、多语言印地语文本到语音(LIMMITS'23)挑战赛是 ICASSP 2023 信号处理大挑战赛的一部分。LIMMITS'23 的目标是使用马拉地语、印地语和泰卢固语数据集开发轻量级、多扬声器、多语言文本到语音 (TTS) 模型,每种语言的男女语音艺术家都要发布至少 40 小时的数据。该挑战赛鼓励印度语言中的语音合成技术的进步,以及语音合成技术数据选择和模型压缩技术的发展。LIMMITS'23 的 3 个分会场为世界各地的研究人员和从业人员提供了探索 TTS 研究领域最先进技术的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
期刊最新文献
List of Reviewers Identifiability Conditions for Acoustic Feedback Cancellation With the Two-Channel Adaptive Feedback Canceller Algorithm Embracing Cacophony: Explaining and Improving Random Mixing in Music Source Separation Common-Gain Autoencoder Network for Binaural Speech Enhancement LEMON: Localized Editing With Mesh Optimization and Neural Shaders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1