{"title":"Barrier-Function Adaptive Finite-Time Trajectory Tracking Controls for Cyber Resilience in Smart Grids Under an Electricity Market Environment","authors":"Seyed Hossein Rouhani;Chun-Lien Su;Saleh Mobayen;Mostafa Esmaeili Shayan;Mohammad-Hassan Khooban;Mahmoud Elsisi","doi":"10.1109/TSG.2024.3417704","DOIUrl":null,"url":null,"abstract":"The advancement and proliferation of digitalization and communication infrastructure have facilitated the rise of real-time bidding markets in smart grids. In these dynamic markets, energy distribution companies and power-generating companies interact to establish energy exchange contracts based on offered prices. However, the fluctuation in power flow resulting from contract changes within the real-time bidding market introduces a potential vulnerability that malicious attackers can exploit to launch successful stealthy attacks. To enhance the smart grid resiliency against cyber-attack in the power market bidding environment, a new barrier-function adaptive finite-time trajectory tracking control is proposed in this paper. The developed controller is utilized to actively counteract and mitigate potential cyber-attacks to ensure their rejection and prevention. The stability analysis convincingly demonstrates the rapid convergence of system states within a finite time frame, empowering the system to effectively reject cyber-attacks in real-time. Test results of an IEEE test systems, considering governor dead bound nonlinearity and communication time delay are presented and compared with those obtained from other methods to ensure and demonstrate the performance of proposed method. The Speedgoat real-time target machine, along with Simulink real-time, validates the effectiveness of the proposed method.","PeriodicalId":13331,"journal":{"name":"IEEE Transactions on Smart Grid","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Smart Grid","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10566851/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement and proliferation of digitalization and communication infrastructure have facilitated the rise of real-time bidding markets in smart grids. In these dynamic markets, energy distribution companies and power-generating companies interact to establish energy exchange contracts based on offered prices. However, the fluctuation in power flow resulting from contract changes within the real-time bidding market introduces a potential vulnerability that malicious attackers can exploit to launch successful stealthy attacks. To enhance the smart grid resiliency against cyber-attack in the power market bidding environment, a new barrier-function adaptive finite-time trajectory tracking control is proposed in this paper. The developed controller is utilized to actively counteract and mitigate potential cyber-attacks to ensure their rejection and prevention. The stability analysis convincingly demonstrates the rapid convergence of system states within a finite time frame, empowering the system to effectively reject cyber-attacks in real-time. Test results of an IEEE test systems, considering governor dead bound nonlinearity and communication time delay are presented and compared with those obtained from other methods to ensure and demonstrate the performance of proposed method. The Speedgoat real-time target machine, along with Simulink real-time, validates the effectiveness of the proposed method.
期刊介绍:
The IEEE Transactions on Smart Grid is a multidisciplinary journal that focuses on research and development in the field of smart grid technology. It covers various aspects of the smart grid, including energy networks, prosumers (consumers who also produce energy), electric transportation, distributed energy resources, and communications. The journal also addresses the integration of microgrids and active distribution networks with transmission systems. It publishes original research on smart grid theories and principles, including technologies and systems for demand response, Advance Metering Infrastructure, cyber-physical systems, multi-energy systems, transactive energy, data analytics, and electric vehicle integration. Additionally, the journal considers surveys of existing work on the smart grid that propose new perspectives on the history and future of intelligent and active grids.