Iron–Cobalt Phosphide Encapsulated in a N-Doped Carbon Framework as a Promising Low-Cost Oxygen Reduction Electrocatalyst for Zinc-Air Batteries

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Pub Date : 2024-06-26 DOI:10.1021/acs.inorgchem.4c02077
Jinlong Liu, Ziyu Luo, Jiayun Wu, Dong Qian, Weixiong Liao, Geoffrey I. N. Waterhouse and Xiangxiong Chen*, 
{"title":"Iron–Cobalt Phosphide Encapsulated in a N-Doped Carbon Framework as a Promising Low-Cost Oxygen Reduction Electrocatalyst for Zinc-Air Batteries","authors":"Jinlong Liu,&nbsp;Ziyu Luo,&nbsp;Jiayun Wu,&nbsp;Dong Qian,&nbsp;Weixiong Liao,&nbsp;Geoffrey I. N. Waterhouse and Xiangxiong Chen*,&nbsp;","doi":"10.1021/acs.inorgchem.4c02077","DOIUrl":null,"url":null,"abstract":"<p >The oxygen reduction reaction (ORR) plays a vital role in many next-generation electrochemical energy conversion and storage devices, motivating the search for low-cost ORR electrocatalysts possessing high activity and excellent durability. In this work, we demonstrate that iron–cobalt phosphide (FeCoP) nanoparticles encapsulated in a N-doped carbon framework (FeCoP@NC) represent a very promising catalyst for the ORR in alkaline media. The core–shell structured FeCoP@NC catalyst offered outstanding ORR activity with a half-wave potential (<i>E</i><sub>1/2</sub>) of 0.86 V vs reversible hydrogen electrode (RHE) and excellent stability in a 0.1 M KOH electrolyte, outperforming commercial Pt/C and many recently reported noble-metal-free ORR electrocatalysts. The superiority of FeCoP@NC as an ORR electrocatalyst relative to Pt/C was further verified in prototype zinc-air batteries (ZABs), with the aqueous and flexible ZABs prepared using FeCoP@NC offering excellent stability, impressive open circuit voltages (1.56 and 1.44 V, respectively), and high maximum power densities (183.5 and 69.7 mW cm<sup>–2</sup>, respectively). Density functional theory calculations revealed that encapsulating FeCoP nanoparticles in N-doped carbon shells resulted in favorable electron penetration effects, which synergistically regulated the adsorption/desorption of ORR intermediates for optimal ORR performance while also boosting the electronic conductivity. Our findings offer valuable new insights for rational design of transition metal phosphide-based catalysts for the ORR and other electrochemical applications.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c02077","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The oxygen reduction reaction (ORR) plays a vital role in many next-generation electrochemical energy conversion and storage devices, motivating the search for low-cost ORR electrocatalysts possessing high activity and excellent durability. In this work, we demonstrate that iron–cobalt phosphide (FeCoP) nanoparticles encapsulated in a N-doped carbon framework (FeCoP@NC) represent a very promising catalyst for the ORR in alkaline media. The core–shell structured FeCoP@NC catalyst offered outstanding ORR activity with a half-wave potential (E1/2) of 0.86 V vs reversible hydrogen electrode (RHE) and excellent stability in a 0.1 M KOH electrolyte, outperforming commercial Pt/C and many recently reported noble-metal-free ORR electrocatalysts. The superiority of FeCoP@NC as an ORR electrocatalyst relative to Pt/C was further verified in prototype zinc-air batteries (ZABs), with the aqueous and flexible ZABs prepared using FeCoP@NC offering excellent stability, impressive open circuit voltages (1.56 and 1.44 V, respectively), and high maximum power densities (183.5 and 69.7 mW cm–2, respectively). Density functional theory calculations revealed that encapsulating FeCoP nanoparticles in N-doped carbon shells resulted in favorable electron penetration effects, which synergistically regulated the adsorption/desorption of ORR intermediates for optimal ORR performance while also boosting the electronic conductivity. Our findings offer valuable new insights for rational design of transition metal phosphide-based catalysts for the ORR and other electrochemical applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
封装在掺杂 N 的碳框架中的磷化铁钴有望成为锌-空气电池的低成本氧还原电催化剂。
氧还原反应(ORR)在许多下一代电化学能量转换和存储装置中发挥着至关重要的作用,这促使人们寻找具有高活性和优异耐久性的低成本 ORR 电催化剂。在这项工作中,我们证明了封装在掺杂 N 的碳框架(FeCoP@NC)中的磷化铁钴(FeCoP)纳米颗粒是一种非常有前景的碱性介质 ORR 催化剂。核壳结构的 FeCoP@NC 催化剂具有出色的 ORR 活性,与可逆氢电极 (RHE) 相比,其半波电位 (E1/2) 为 0.86 V,并且在 0.1 M KOH 电解液中具有极佳的稳定性,优于商用 Pt/C 和最近报道的许多不含惰性金属的 ORR 电催化剂。FeCoP@NC作为ORR电催化剂相对于Pt/C的优越性在锌-空气电池(ZAB)原型中得到了进一步验证,使用FeCoP@NC制备的水性和柔性ZAB具有优异的稳定性、惊人的开路电压(分别为1.56 V和1.44 V)和高最大功率密度(分别为183.5 mW和69.7 mW cm-2)。密度泛函理论计算显示,将 FeCoP 纳米粒子封装在掺杂 N 的碳壳中会产生有利的电子穿透效应,从而协同调节 ORR 中间产物的吸附/解吸,以获得最佳的 ORR 性能,同时还能提高电子传导性。我们的研究结果为合理设计用于 ORR 和其他电化学应用的过渡金属磷催化剂提供了宝贵的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
期刊最新文献
Unsymmetric Co-Facial "Salixpyrrole" Hydrogen Evolution Catalysts: Two Metals are Better than One. Exploring Ligand Effects on Structure, Bonding, and Photolytic Hydride Transfer of Cationic Gold(I) Bridging Hydride Complexes of Molybdocene and Tungstenocene. Exploring the Te(II)/Te(IV) Redox Couple of a Tellurorosamine Chromophore: Photophysical, Photochemical, and Electrochemical Studies. A Series of Cyclopentadienyl Lanthanum Complexes with Metalloid Germanium Clusters. Active Site Characterization of a Campylobacter jejuni Nitrate Reductase Variant Provides Insight into the Enzyme Mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1