Organ-Specific Gene Expression Control Using DNA Origami-Based Nanodevices

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-06-26 DOI:10.1021/acs.nanolett.4c02104
Yuxiang Liu, Ruixuan Wang, Qimingxing Chen, Yan Chang, Qi Chen, Kodai Fukumoto, Bingxun Wang, Jianchen Yu, Changfeng Luo, Jiayuan Ma, Xiaoxia Chen, Yuko Murayama, Kenichi Umeda, Noriyuki Kodera, Yoshie Harada, Shun-ichi Sekine, Jianfeng Li* and Hisashi Tadakuma*, 
{"title":"Organ-Specific Gene Expression Control Using DNA Origami-Based Nanodevices","authors":"Yuxiang Liu,&nbsp;Ruixuan Wang,&nbsp;Qimingxing Chen,&nbsp;Yan Chang,&nbsp;Qi Chen,&nbsp;Kodai Fukumoto,&nbsp;Bingxun Wang,&nbsp;Jianchen Yu,&nbsp;Changfeng Luo,&nbsp;Jiayuan Ma,&nbsp;Xiaoxia Chen,&nbsp;Yuko Murayama,&nbsp;Kenichi Umeda,&nbsp;Noriyuki Kodera,&nbsp;Yoshie Harada,&nbsp;Shun-ichi Sekine,&nbsp;Jianfeng Li* and Hisashi Tadakuma*,&nbsp;","doi":"10.1021/acs.nanolett.4c02104","DOIUrl":null,"url":null,"abstract":"<p >Nanodevices that function in specific organs or cells are one of the ultimate goals of synthetic biology. The recent progress in DNA nanotechnology such as DNA origami has allowed us to construct nanodevices to deliver a payload (e.g., drug) to the tumor. However, delivery to specific organs remains difficult due to the fragility of the DNA nanostructure and the low targeting capability of the DNA nanostructure. Here, we constructed tough DNA origami that allowed us to encapsulate the DNA origami into lipid-based nanoparticles (LNPs) under harsh conditions (low pH), harnessing organ-specific delivery of the gene of interest (GOI). We found that DNA origami-encapsulated LNPs can increase the functionality of payload GOIs (mRNA and siRNA) inside mouse organs through the contribution from different LNP structures revealed by cryogenic electron microscope (Cryo-EM). These data should be the basis for future organ-specific gene expression control using DNA origami nanodevices.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c02104","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanodevices that function in specific organs or cells are one of the ultimate goals of synthetic biology. The recent progress in DNA nanotechnology such as DNA origami has allowed us to construct nanodevices to deliver a payload (e.g., drug) to the tumor. However, delivery to specific organs remains difficult due to the fragility of the DNA nanostructure and the low targeting capability of the DNA nanostructure. Here, we constructed tough DNA origami that allowed us to encapsulate the DNA origami into lipid-based nanoparticles (LNPs) under harsh conditions (low pH), harnessing organ-specific delivery of the gene of interest (GOI). We found that DNA origami-encapsulated LNPs can increase the functionality of payload GOIs (mRNA and siRNA) inside mouse organs through the contribution from different LNP structures revealed by cryogenic electron microscope (Cryo-EM). These data should be the basis for future organ-specific gene expression control using DNA origami nanodevices.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于 DNA 折纸的纳米器件控制器官特异性基因表达
在特定器官或细胞中发挥作用的纳米装置是合成生物学的终极目标之一。DNA 纳米技术(如 DNA 折纸)的最新进展使我们能够构建纳米装置,将有效载荷(如药物)输送到肿瘤。然而,由于 DNA 纳米结构的脆弱性和较低的靶向能力,向特定器官递送仍然很困难。在这里,我们构建了坚韧的DNA折纸,使我们能够在苛刻的条件(低pH值)下将DNA折纸封装到脂基纳米颗粒(LNPs)中,利用器官特异性递送感兴趣的基因(GOI)。我们发现,通过低温电子显微镜(Cryo-EM)显示的不同 LNP 结构的贡献,DNA 折纸封装的 LNPs 可以提高有效载荷 GOIs(mRNA 和 siRNA)在小鼠器官内的功能。这些数据应成为未来利用DNA折纸纳米器件控制器官特异性基因表达的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Graphene Bilayer as a Template for Manufacturing Novel Encapsulated 2D Materials. Octahedral vs Tiara-like Pd6(SR)12 Clusters. Scalable Multistep Imprinting of Multiplexed Optical Anti-counterfeiting Patterns with Hierarchical Structures. Transcutaneous Immunization of 1D Rod-Like Tobacco-Mosaic-Virus-Based Peptide Vaccine via Tip-Loaded Dissolving Microneedles. Vanadate-Mediated Mismatch Configuration over the Reconstructed Nickel-Iron Electrocatalyst for Boosting Alkaline Oxygen Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1