Caffeine Gum Improves Reaction Time but Reduces Composure Versus Placebo During the Extra-Time Period of Simulated Soccer Match-Play in Male Semiprofessional Players.
Adam Field, Liam Corr, Laurence Birdsey, Christina Langley, Ben Marshall, Greg Wood, Mark Hearris, Diogo Martinho, Christa Carbry, Robert Naughton, James Fleming, Magni Mohr, Peter Krustrup, Mark Russell, Liam David Harper
{"title":"Caffeine Gum Improves Reaction Time but Reduces Composure Versus Placebo During the Extra-Time Period of Simulated Soccer Match-Play in Male Semiprofessional Players.","authors":"Adam Field, Liam Corr, Laurence Birdsey, Christina Langley, Ben Marshall, Greg Wood, Mark Hearris, Diogo Martinho, Christa Carbry, Robert Naughton, James Fleming, Magni Mohr, Peter Krustrup, Mark Russell, Liam David Harper","doi":"10.1123/ijsnem.2023-0220","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to determine whether caffeine gum influenced perceptual-cognitive and physical performance during the extra-time period of simulated soccer match-play. Semiprofessional male soccer players (n = 12, age: 22 ± 3 years, stature: 1.78 ± 0.06 m, mass: 75 ± 9 kg) performed 120-min soccer-specific exercise on two occasions. In a triple-blind, randomized, crossover design, players chewed caffeinated (200 mg; caffeine) or control (0 mg; placebo) gum for 5 min following 90 min of soccer-specific exercise. Perceptual-cognitive skills (i.e., passing accuracy, reaction time, composure, and adaptability) were assessed using a soccer-specific virtual reality simulator, collected pre- and posttrial. Neuromuscular performance (reactive-strength index, vertical jump height, absolute and relative peak power output, and negative vertical displacement) and sprint performance (15 and 30 m) were measured at pretrial, half-time, 90 min, and posttrial. Caffeine gum attenuated declines in reaction time (pre: 90.8 ± 0.8 AU to post: 90.7 ± 0.8 AU) by a further 4.2% than placebo (pre: 92.1 ± 0.8 AU to post: 88.2 ± 0.8 AU; p < .01). Caffeine gum reduced composure by 4.7% (pre: 69.1 ± 0.8 AU to post: 65.9 ± 0.8 AU) versus placebo (pre: 68.8 ± 0.8 AU to post: 68.3 ± 0.8 AU; p < .01). Caffeine gum did not influence any other variables (p > .05). Where caffeine gum is consumed by players prior to extra-time, reaction time increases but composure may be compromised, and neuromuscular and sprint performance remain unchanged. Future work should assess caffeine gum mixes with substances like L-theanine that promote a relaxed state under stressful conditions.</p>","PeriodicalId":14334,"journal":{"name":"International journal of sport nutrition and exercise metabolism","volume":" ","pages":"286-297"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sport nutrition and exercise metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/ijsnem.2023-0220","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to determine whether caffeine gum influenced perceptual-cognitive and physical performance during the extra-time period of simulated soccer match-play. Semiprofessional male soccer players (n = 12, age: 22 ± 3 years, stature: 1.78 ± 0.06 m, mass: 75 ± 9 kg) performed 120-min soccer-specific exercise on two occasions. In a triple-blind, randomized, crossover design, players chewed caffeinated (200 mg; caffeine) or control (0 mg; placebo) gum for 5 min following 90 min of soccer-specific exercise. Perceptual-cognitive skills (i.e., passing accuracy, reaction time, composure, and adaptability) were assessed using a soccer-specific virtual reality simulator, collected pre- and posttrial. Neuromuscular performance (reactive-strength index, vertical jump height, absolute and relative peak power output, and negative vertical displacement) and sprint performance (15 and 30 m) were measured at pretrial, half-time, 90 min, and posttrial. Caffeine gum attenuated declines in reaction time (pre: 90.8 ± 0.8 AU to post: 90.7 ± 0.8 AU) by a further 4.2% than placebo (pre: 92.1 ± 0.8 AU to post: 88.2 ± 0.8 AU; p < .01). Caffeine gum reduced composure by 4.7% (pre: 69.1 ± 0.8 AU to post: 65.9 ± 0.8 AU) versus placebo (pre: 68.8 ± 0.8 AU to post: 68.3 ± 0.8 AU; p < .01). Caffeine gum did not influence any other variables (p > .05). Where caffeine gum is consumed by players prior to extra-time, reaction time increases but composure may be compromised, and neuromuscular and sprint performance remain unchanged. Future work should assess caffeine gum mixes with substances like L-theanine that promote a relaxed state under stressful conditions.
期刊介绍:
The International Journal of Sport Nutrition and Exercise Metabolism (IJSNEM) publishes original scientific investigations and scholarly reviews offering new insights into sport nutrition and exercise metabolism, as well as articles focusing on the application of the principles of biochemistry, physiology, and nutrition to sport and exercise. The journal also offers editorials, digests of related articles from other fields, research notes, and reviews of books, videos, and other media releases.
To subscribe to either the print or e-version of IJSNEM, press the Subscribe or Renew button at the top of your screen.