Endothelial Cell Derived Extracellular Vesicles and Hematopoiesis.

IF 2.5 3区 医学 Q2 BIOLOGY Radiation research Pub Date : 2024-08-01 DOI:10.1667/RADE-24-00039.1
Kareena Sukhnanan, Joel R Ross, Nelson J Chao, Benny J Chen
{"title":"Endothelial Cell Derived Extracellular Vesicles and Hematopoiesis.","authors":"Kareena Sukhnanan, Joel R Ross, Nelson J Chao, Benny J Chen","doi":"10.1667/RADE-24-00039.1","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) have been recognized as a novel way of cell-to-cell communication in the last several decades. It is believed that EVs exert their functions on nearby or distant cells through transfer of the cargo that they carry. In this review, we focus on EVs produced by endothelial cells, with emphasis on their role in hematopoiesis. We first describe how endothelial cells interact with hematopoietic stem/progenitor cells during development and in disease conditions. We then discuss EVs, ranging from their subtypes to isolation methods and analysis of EVs. With the above background information, we next review the literature related to endothelial cell derived EVs (ECEVs), including physiological functions and their clinical uses. In the last sections, we summarize the current results about the effect of ECEVs on hematopoiesis under physiological and stress conditions.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00039.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular vesicles (EVs) have been recognized as a novel way of cell-to-cell communication in the last several decades. It is believed that EVs exert their functions on nearby or distant cells through transfer of the cargo that they carry. In this review, we focus on EVs produced by endothelial cells, with emphasis on their role in hematopoiesis. We first describe how endothelial cells interact with hematopoietic stem/progenitor cells during development and in disease conditions. We then discuss EVs, ranging from their subtypes to isolation methods and analysis of EVs. With the above background information, we next review the literature related to endothelial cell derived EVs (ECEVs), including physiological functions and their clinical uses. In the last sections, we summarize the current results about the effect of ECEVs on hematopoiesis under physiological and stress conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内皮细胞衍生的细胞外囊泡与造血。
过去几十年来,细胞外囊泡(EVs)被认为是细胞间通信的一种新方式。人们认为,EVs 通过其携带的货物的转移,对附近或远处的细胞发挥功能。在这篇综述中,我们将重点讨论内皮细胞产生的 EVs,并强调它们在造血过程中的作用。我们首先描述了内皮细胞在发育过程中和疾病状态下如何与造血干细胞/祖细胞相互作用。然后,我们将从EVs的亚型、分离方法和分析等方面讨论EVs。根据上述背景信息,我们接下来回顾了与内皮细胞衍生的EVs(ECEVs)相关的文献,包括生理功能及其临床用途。在最后几节,我们总结了目前有关 ECEVs 在生理和应激条件下对造血的影响的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
期刊最新文献
Long-term Radiation Signal Persistence in Urine and Blood: A Two-year Analysis in Non-human Primates Exposed to a 4 Gy Total-Body Gamma-Radiation Dose. Additive Effects of Cu-ATSM and Radiation on Survival of Diffuse Intrinsic Pontine Glioma Cells. Harnessing Senescence for Antitumor Immunity to Advance Cancer Treatment. 56Fe-ion Exposure Increases the Incidence of Lung and Brain Tumors at a Similar Rate in Male and Female Mice. A Comparative Study on Radiosensitivity of Canine Osteosarcoma Cell Lines Subjected to Spatially Fractionated Radiotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1