A prognostic nomogram to predict the cancer-specific survival of patients with initially diagnosed metastatic gastric cancer: a validation study in a Chinese cohort.
Ziming Zhao, Erxun Dai, Bao Jin, Ping Deng, Zulihaer Salehebieke, Bin Han, Rongfan Wu, Zhaowu Yu, Jun Ren
{"title":"A prognostic nomogram to predict the cancer-specific survival of patients with initially diagnosed metastatic gastric cancer: a validation study in a Chinese cohort.","authors":"Ziming Zhao, Erxun Dai, Bao Jin, Ping Deng, Zulihaer Salehebieke, Bin Han, Rongfan Wu, Zhaowu Yu, Jun Ren","doi":"10.1007/s12094-024-03576-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Few studies have been designed to predict the survival of Chinese patients initially diagnosed with metastatic gastric cancer (mGC). Therefore, the objective of this study was to construct and validate a new nomogram model to predict cancer-specific survival (CSS) in Chinese patients.</p><p><strong>Methods: </strong>We collected 328 patients with mGC from Northern Jiangsu People's Hospital as the training cohort and 60 patients from Xinyuan County People's Hospital as the external validation cohort. Multivariate Cox regression was used to identify risk factors, and a nomogram was created to predict CSS. The predictive performance of the nomogram was evaluated using the consistency index (C-index), the calibration curve, and the decision curve analysis (DCA) in the training cohort and the validation cohort.</p><p><strong>Results: </strong>Multivariate Cox regression identified differentiation grade (P < 0.001), T-stage (P < 0.05), N-stage (P < 0.001), surgery (P < 0.05), and chemotherapy (P < 0.001) as independent predictors of CSS. Nomogram of chemotherapy regimens and cycles was also designed by us for the prediction of mGC. Thus, these factors are integrated into the nomogram model: the C-index value was 0.72 (95% CI 0.70-0.85) for the nomogram model and 0.82 (95% CI 0.79-0.89) and 0.73 (95% CI 0.70-0.86) for the internal and external validation cohorts, respectively. Calibration curves and DCA also demonstrated adequate fit and ideal net benefit in prediction and clinical applications.</p><p><strong>Conclusions: </strong>We established a practical nomogram to predict CSS in Chinese patients initially diagnosed with mGC. Nomograms can be used to individualize survival predictions and guide clinicians in making therapeutic decisions.</p>","PeriodicalId":50685,"journal":{"name":"Clinical & Translational Oncology","volume":" ","pages":"135-150"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical & Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12094-024-03576-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Few studies have been designed to predict the survival of Chinese patients initially diagnosed with metastatic gastric cancer (mGC). Therefore, the objective of this study was to construct and validate a new nomogram model to predict cancer-specific survival (CSS) in Chinese patients.
Methods: We collected 328 patients with mGC from Northern Jiangsu People's Hospital as the training cohort and 60 patients from Xinyuan County People's Hospital as the external validation cohort. Multivariate Cox regression was used to identify risk factors, and a nomogram was created to predict CSS. The predictive performance of the nomogram was evaluated using the consistency index (C-index), the calibration curve, and the decision curve analysis (DCA) in the training cohort and the validation cohort.
Results: Multivariate Cox regression identified differentiation grade (P < 0.001), T-stage (P < 0.05), N-stage (P < 0.001), surgery (P < 0.05), and chemotherapy (P < 0.001) as independent predictors of CSS. Nomogram of chemotherapy regimens and cycles was also designed by us for the prediction of mGC. Thus, these factors are integrated into the nomogram model: the C-index value was 0.72 (95% CI 0.70-0.85) for the nomogram model and 0.82 (95% CI 0.79-0.89) and 0.73 (95% CI 0.70-0.86) for the internal and external validation cohorts, respectively. Calibration curves and DCA also demonstrated adequate fit and ideal net benefit in prediction and clinical applications.
Conclusions: We established a practical nomogram to predict CSS in Chinese patients initially diagnosed with mGC. Nomograms can be used to individualize survival predictions and guide clinicians in making therapeutic decisions.
期刊介绍:
Clinical and Translational Oncology is an international journal devoted to fostering interaction between experimental and clinical oncology. It covers all aspects of research on cancer, from the more basic discoveries dealing with both cell and molecular biology of tumour cells, to the most advanced clinical assays of conventional and new drugs. In addition, the journal has a strong commitment to facilitating the transfer of knowledge from the basic laboratory to the clinical practice, with the publication of educational series devoted to closing the gap between molecular and clinical oncologists. Molecular biology of tumours, identification of new targets for cancer therapy, and new technologies for research and treatment of cancer are the major themes covered by the educational series. Full research articles on a broad spectrum of subjects, including the molecular and cellular bases of disease, aetiology, pathophysiology, pathology, epidemiology, clinical features, and the diagnosis, prognosis and treatment of cancer, will be considered for publication.