Rational Design of Transition-Metal-Based Catalysts for the Electrochemical 5-Hydroxymethylfurfural Reduction Reaction

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-06-24 DOI:10.1002/cssc.202400869
Siqi Li, Ziwang Kan, Jiaxiao Bai, Ang Ma, Jing Lu, Prof. Song Liu
{"title":"Rational Design of Transition-Metal-Based Catalysts for the Electrochemical 5-Hydroxymethylfurfural Reduction Reaction","authors":"Siqi Li,&nbsp;Ziwang Kan,&nbsp;Jiaxiao Bai,&nbsp;Ang Ma,&nbsp;Jing Lu,&nbsp;Prof. Song Liu","doi":"10.1002/cssc.202400869","DOIUrl":null,"url":null,"abstract":"<p>The electrochemical reduction reaction (HMFRR) of 5-hydroxymethylfurfural (HMF) has emerged as a promising avenue for the utilization and refinement of the biomass-derived platform molecule HMF into high-value chemicals, addressing energy sustainability challenges. Transition metal electrocatalysts (TMCs) have recently garnered attention as promising candidates for catalyzing HMFRR, capitalizing on the presence of vacant d orbitals and unpaired d electrons. TMCs play a pivotal role in facilitating the generation of intermediates through interactions with HMF, thereby lowering the activation energy of intricate reactions and significantly augmenting the catalytic reaction rate. In the absence of comprehensive and guiding reviews in this domain, this paper aims to comprehensively summarize the key advancements in the design of transition metal catalysts for HMFRR. It elucidates the mechanisms and pH dependency of various products generated during the electrochemical reduction of HMF, with a specific emphasis on the bond-cleavage angle. Additionally, it offers a detailed introduction to typical in-situ characterization techniques. Finally, the review explores engineering strategies and principles to enhance HMFRR activity using TMCs, particularly focusing on multiphase interface control, crystal face control, and defect engineering control. This review introduces novel concepts to guide the design of HMFRR electrocatalysts, especially TMCs, thus promoting advancements in biomass conversion.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"17 24","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cssc.202400869","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical reduction reaction (HMFRR) of 5-hydroxymethylfurfural (HMF) has emerged as a promising avenue for the utilization and refinement of the biomass-derived platform molecule HMF into high-value chemicals, addressing energy sustainability challenges. Transition metal electrocatalysts (TMCs) have recently garnered attention as promising candidates for catalyzing HMFRR, capitalizing on the presence of vacant d orbitals and unpaired d electrons. TMCs play a pivotal role in facilitating the generation of intermediates through interactions with HMF, thereby lowering the activation energy of intricate reactions and significantly augmenting the catalytic reaction rate. In the absence of comprehensive and guiding reviews in this domain, this paper aims to comprehensively summarize the key advancements in the design of transition metal catalysts for HMFRR. It elucidates the mechanisms and pH dependency of various products generated during the electrochemical reduction of HMF, with a specific emphasis on the bond-cleavage angle. Additionally, it offers a detailed introduction to typical in-situ characterization techniques. Finally, the review explores engineering strategies and principles to enhance HMFRR activity using TMCs, particularly focusing on multiphase interface control, crystal face control, and defect engineering control. This review introduces novel concepts to guide the design of HMFRR electrocatalysts, especially TMCs, thus promoting advancements in biomass conversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电化学 5-羟甲基糠醛还原反应中过渡金属催化剂的合理设计。
5-hydroxymethylfurfural (HMF) 的电化学还原反应 (HMFRR) 已成为利用生物质衍生的平台分子 HMF 并将其提炼为高价值化学品、应对能源可持续性挑战的一条大有可为的途径。最近,过渡金属电催化剂(TMCs)作为催化 HMFRR 的理想候选物质,利用空闲 d 轨道和未配对 d 电子的存在而备受关注。TMC 在通过与 HMF 的相互作用促进中间产物的生成方面发挥着关键作用,从而降低了复杂反应的活化能,并显著提高了催化反应速率。由于该领域缺乏全面的指导性综述,本文旨在全面总结 HMFRR 过渡金属催化剂设计方面的主要进展。它阐明了 HMF 电化学还原过程中生成的各种产物的机理和 pH 依赖性,并特别强调了键裂角。此外,它还详细介绍了典型的原位表征技术。最后,本综述探讨了使用 TMC 增强 HMFRR 活性的工程策略和原理,尤其侧重于多相界面控制、晶面控制和缺陷工程控制。本综述介绍了指导 HMFRR 电催化剂(尤其是 TMCs)设计的新概念,从而推动了生物质转化的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Cover Feature: Electrocatalysts for Urea Synthesis from CO2 and Nitrogenous Species: From CO2 and N2/NOx Reduction to urea synthesis (ChemSusChem 24/2024) Cover Feature: Recycling Valuable Phenol from Polycarbonate Plastic Waste Via Direct Depolymerization and Csp2−Csp3 Bond Cleavage Under Mild Conditions (ChemSusChem 24/2024) Cover Feature: Azolium-Porphyrin Electrosynthesis (ChemSusChem 24/2024) Front Cover: Ballistic-Aggregated Carbon Nanofoam in Target-Side of Pulsed Laser Deposition for Energy Storage Applications (ChemSusChem 24/2024) Converting the CHF3 Greenhouse Gas into Nanometer-Thick LiF Coating for High-Voltage Cathode Li-ion Batteries Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1