Diversity of marine bacteria growing on leachates from virgin and weathered plastic: Insights into potential degraders

IF 3.6 4区 生物学 Q2 ENVIRONMENTAL SCIENCES Environmental Microbiology Reports Pub Date : 2024-06-23 DOI:10.1111/1758-2229.13305
Cristina Romera-Castillo, Stéphanie Birnstiel, Marta Sebastián
{"title":"Diversity of marine bacteria growing on leachates from virgin and weathered plastic: Insights into potential degraders","authors":"Cristina Romera-Castillo,&nbsp;Stéphanie Birnstiel,&nbsp;Marta Sebastián","doi":"10.1111/1758-2229.13305","DOIUrl":null,"url":null,"abstract":"<p>Plastic debris in the ocean releases chemical compounds that can be toxic to marine fauna. It was recently found that some marine bacteria can degrade such leachates, but information on the diversity of these bacteria is mostly lacking. In this study, we analysed the bacterial diversity growing on leachates from new low-density polyethylene (LDPE) and a mix of naturally weathered plastic, collected from beach sand. We used a combination of Catalysed Reporter Deposition-Fluorescence In Situ Hybridization (CARD-FISH), BioOrthogonal Non-Canonical Amino acid Tagging (BONCAT), and 16S rRNA gene amplicon sequencing to analyse bacterioplankton-groups specific activity responses and the identity of the responsive taxa to plastic leachates produced under irradiated and non-irradiated conditions. We found that some generalist taxa responded to all leachates, most of them belonging to the Alteromonadales, Oceanospirillales, Nitrosococcales, Rhodobacterales, and Sphingomonadales orders. However, there were also non-generalist taxa responding to specific irradiated and non-irradiated leachates. Our results provide information about bacterial taxa that could be potentially used to degrade the chemicals released during plastic degradation into seawater contributing to its bioremediation.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194452/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13305","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plastic debris in the ocean releases chemical compounds that can be toxic to marine fauna. It was recently found that some marine bacteria can degrade such leachates, but information on the diversity of these bacteria is mostly lacking. In this study, we analysed the bacterial diversity growing on leachates from new low-density polyethylene (LDPE) and a mix of naturally weathered plastic, collected from beach sand. We used a combination of Catalysed Reporter Deposition-Fluorescence In Situ Hybridization (CARD-FISH), BioOrthogonal Non-Canonical Amino acid Tagging (BONCAT), and 16S rRNA gene amplicon sequencing to analyse bacterioplankton-groups specific activity responses and the identity of the responsive taxa to plastic leachates produced under irradiated and non-irradiated conditions. We found that some generalist taxa responded to all leachates, most of them belonging to the Alteromonadales, Oceanospirillales, Nitrosococcales, Rhodobacterales, and Sphingomonadales orders. However, there were also non-generalist taxa responding to specific irradiated and non-irradiated leachates. Our results provide information about bacterial taxa that could be potentially used to degrade the chemicals released during plastic degradation into seawater contributing to its bioremediation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原生塑料和风化塑料浸出物上生长的海洋细菌的多样性:对潜在降解者的启示。
海洋中的塑料垃圾会释放出对海洋动物有毒的化合物。最近发现,一些海洋细菌可以降解这些渗滤液,但有关这些细菌多样性的信息却十分缺乏。在这项研究中,我们分析了从海滩沙子中收集的新型低密度聚乙烯(LDPE)和自然风化塑料混合浸出物上生长的细菌多样性。我们结合使用了催化报告沉积-荧光原位杂交(CARD-FISH)、生物透明非规范氨基酸标记(BONCAT)和 16S rRNA 基因扩增片段测序技术,分析了细菌-浮游生物群对辐照和非辐照条件下产生的塑料浸出液的特定活性反应和反应类群的特征。我们发现,一些普通类群对所有沥滤液都有反应,其中大部分属于 Alteromonadales、Oceanospirillales、Nitrosococcales、Rhodobacterales 和 Sphingomonadales 目。不过,也有一些非通用分类群对特定的辐照和非辐照渗滤液做出了反应。我们的研究结果提供了有关细菌类群的信息,这些细菌类群可用于降解塑料降解过程中释放到海水中的化学物质,从而促进其生物修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Microbiology Reports
Environmental Microbiology Reports ENVIRONMENTAL SCIENCES-MICROBIOLOGY
CiteScore
6.00
自引率
3.00%
发文量
91
审稿时长
3.0 months
期刊介绍: The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side. Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.
期刊最新文献
Seasonal dynamics of bacterial community structure and function in the surf zone seawater of a recreational beach in Ostend, Belgium. Subtle changes in topsoil microbial communities of drained forested peatlands after prolonged drought. Actinorhizal plants and Frankiaceae: The overlooked future of phytoremediation Issue Information Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1