{"title":"Analysis of mutation-originated gain-of-glycosylation using mass spectrometry-based N-glycoproteomics","authors":"Hailun Yang, Zhixin Tian","doi":"10.1002/rcm.9838","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Rationale</h3>\n \n <p>A general N-glycoproteomics analysis pipeline has been established for characterization of mutation-related gain-of-glycosylation (GoG) at intact N-glycopeptide molecular level, generating comprehensive site and structure information of N-glycosylation.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>This study focused on mutation-originated GoG using a mass spectrometry-based N-glycoproteomics analysis workflow. In brief, GoG intact N-glycopeptide databases were built, consisting of 2701 proteins (potential GoG N-glycosites and amino acids derived from MUTAGEN, VARIANT and VAR_SEQ in UniProt) and 6709 human N-glycans (≤50 sequence isomers per monosaccharide composition). We employed the site- and structure-specific N-glycoproteomics workflow utilizing intact N-glycopeptides search engine GPSeeker to identify GoG intact N-glycopeptides from parental breast cancer stem cells (MCF-7 CSCs) and adriamycin-resistant breast cancer stem cells (MCF-7/ADR CSCs).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>With the criteria of spectrum-level false discovery rate control of ≤1%, we identified 87 and 94 GoG intact N-glycopeptides corresponding to 37 and 35 intact N-glycoproteins from MCF-7 CSCs and MCF-7/ADR CSCs, respectively. Micro-heterogeneity and macro-heterogeneity of N-glycosylation from GoG intact N-glycoproteins with VAR_SEQ and VARIANT were found in both MCF-7 CSCs and MCF-7/ADR CSCs systems.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The integration of site- and structure-specific N-glycoproteomics approach, conjugating with GoG characterization, provides a universal workflow for revealing comprehensive N-glycosite and N-glycan structure information of GoG. The analysis of mutation-originated GoG can be extended to GoG characterization of other N-glycoproteome systems including complex clinical tissues and body fluids.</p>\n </section>\n </div>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":"38 17","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcm.9838","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale
A general N-glycoproteomics analysis pipeline has been established for characterization of mutation-related gain-of-glycosylation (GoG) at intact N-glycopeptide molecular level, generating comprehensive site and structure information of N-glycosylation.
Methods
This study focused on mutation-originated GoG using a mass spectrometry-based N-glycoproteomics analysis workflow. In brief, GoG intact N-glycopeptide databases were built, consisting of 2701 proteins (potential GoG N-glycosites and amino acids derived from MUTAGEN, VARIANT and VAR_SEQ in UniProt) and 6709 human N-glycans (≤50 sequence isomers per monosaccharide composition). We employed the site- and structure-specific N-glycoproteomics workflow utilizing intact N-glycopeptides search engine GPSeeker to identify GoG intact N-glycopeptides from parental breast cancer stem cells (MCF-7 CSCs) and adriamycin-resistant breast cancer stem cells (MCF-7/ADR CSCs).
Results
With the criteria of spectrum-level false discovery rate control of ≤1%, we identified 87 and 94 GoG intact N-glycopeptides corresponding to 37 and 35 intact N-glycoproteins from MCF-7 CSCs and MCF-7/ADR CSCs, respectively. Micro-heterogeneity and macro-heterogeneity of N-glycosylation from GoG intact N-glycoproteins with VAR_SEQ and VARIANT were found in both MCF-7 CSCs and MCF-7/ADR CSCs systems.
Conclusions
The integration of site- and structure-specific N-glycoproteomics approach, conjugating with GoG characterization, provides a universal workflow for revealing comprehensive N-glycosite and N-glycan structure information of GoG. The analysis of mutation-originated GoG can be extended to GoG characterization of other N-glycoproteome systems including complex clinical tissues and body fluids.
期刊介绍:
Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.