Mohd Minhajuddin, Amanda Winters, Haobin Ye, Shanshan Pei, Brett Stevens, Austin Gillen, Krysta Engel, Stephanie Gipson, Monica Ransom, Maria Amaya, Anagha Inguva, Maura Gasparetto, Mark J Althoff, Regan Miller, Ian Shelton, Hunter Tolison, Anna Krug, Rachel Culp-Hill, Angelo D'Alessandro, Daniel W Sherbenou, Daniel A Pollyea, Clayton Smith, Craig T Jordan
{"title":"Lysosomal acid lipase A modulates leukemia stem cell response to venetoclax/tyrosine kinase inhibitor combination therapy in blast phase chronic myeloid leukemia.","authors":"Mohd Minhajuddin, Amanda Winters, Haobin Ye, Shanshan Pei, Brett Stevens, Austin Gillen, Krysta Engel, Stephanie Gipson, Monica Ransom, Maria Amaya, Anagha Inguva, Maura Gasparetto, Mark J Althoff, Regan Miller, Ian Shelton, Hunter Tolison, Anna Krug, Rachel Culp-Hill, Angelo D'Alessandro, Daniel W Sherbenou, Daniel A Pollyea, Clayton Smith, Craig T Jordan","doi":"10.3324/haematol.2023.284716","DOIUrl":null,"url":null,"abstract":"<p><p>The treatment of blast phase chronic myeloid leukemia (bpCML) remains a challenge due, at least in part, to drug resistance of leukemia stem cells (LSC). Recent clinical evidence suggests that the BCL-2 inhibitor venetoclax in combination with ABL-targeting tyrosine kinase inhibitors can eradicate bpCML LSC. In this study, we employed preclinical models of bpCML to investigate the efficacy and underlying mechanism of LSC-targeting with combinations of venetoclax/tyrosine kinase inhibitors. Transcriptional analysis of LSC exposed to venetoclax and dasatinib revealed upregulation of genes involved in lysosomal biology, in particular lysosomal acid lipase A (LIPA), a regulator of free fatty acids. Metabolomic analysis confirmed increased levels of free fatty acids in response to treatment with venetoclax/dasatinib. Pretreatment of leukemia cells with bafilomycin, a specific lysosome inhibitor, or genetic perturbation of LIPA, resulted in increased sensitivity of leukemia cells to venetoclax/dasatinib, implicating LIPA in treatment resistance. Importantly, venetoclax/dasatinib treatment did not affect normal stem cell function, suggesting a leukemia-specific response. These results demonstrate that venetoclax/dasatinib is a LSC-selective regimen in bpCML and that disrupting LIPA and fatty acid transport enhances the response to venetoclax/ dasatinib when targeting LSC, providing a rationale for exploring lysosomal disruption as an adjunctive therapeutic strategy to prolong disease remission.</p>","PeriodicalId":12964,"journal":{"name":"Haematologica","volume":" ","pages":"103-116"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694110/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Haematologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3324/haematol.2023.284716","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The treatment of blast phase chronic myeloid leukemia (bpCML) remains a challenge due, at least in part, to drug resistance of leukemia stem cells (LSC). Recent clinical evidence suggests that the BCL-2 inhibitor venetoclax in combination with ABL-targeting tyrosine kinase inhibitors can eradicate bpCML LSC. In this study, we employed preclinical models of bpCML to investigate the efficacy and underlying mechanism of LSC-targeting with combinations of venetoclax/tyrosine kinase inhibitors. Transcriptional analysis of LSC exposed to venetoclax and dasatinib revealed upregulation of genes involved in lysosomal biology, in particular lysosomal acid lipase A (LIPA), a regulator of free fatty acids. Metabolomic analysis confirmed increased levels of free fatty acids in response to treatment with venetoclax/dasatinib. Pretreatment of leukemia cells with bafilomycin, a specific lysosome inhibitor, or genetic perturbation of LIPA, resulted in increased sensitivity of leukemia cells to venetoclax/dasatinib, implicating LIPA in treatment resistance. Importantly, venetoclax/dasatinib treatment did not affect normal stem cell function, suggesting a leukemia-specific response. These results demonstrate that venetoclax/dasatinib is a LSC-selective regimen in bpCML and that disrupting LIPA and fatty acid transport enhances the response to venetoclax/ dasatinib when targeting LSC, providing a rationale for exploring lysosomal disruption as an adjunctive therapeutic strategy to prolong disease remission.
期刊介绍:
Haematologica is a journal that publishes articles within the broad field of hematology. It reports on novel findings in basic, clinical, and translational research.
Scope:
The scope of the journal includes reporting novel research results that:
Have a significant impact on understanding normal hematology or the development of hematological diseases.
Are likely to bring important changes to the diagnosis or treatment of hematological diseases.