A cell line derived from the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae).

IF 1.5 4区 生物学 Q4 CELL BIOLOGY In Vitro Cellular & Developmental Biology. Animal Pub Date : 2024-06-27 DOI:10.1007/s11626-024-00934-y
Stephen Saathoff, Cynthia L Goodman, Eric Haas, Ian Mettelmann, David Stanley
{"title":"A cell line derived from the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae).","authors":"Stephen Saathoff, Cynthia L Goodman, Eric Haas, Ian Mettelmann, David Stanley","doi":"10.1007/s11626-024-00934-y","DOIUrl":null,"url":null,"abstract":"<p><p>Insect cell lines are effective tools used in industry and academia. For example, they are used in screening potential insecticides, in making certain proteins for biomedical applications, and in basic research into insect biology. So far, there are no cell lines derived from the black soldier fly, Hermetia illucens (BSF). This may become an issue because BSFs are employed in a range of industrial and household processes. BSFs are used in producing biodiesel, in developing cosmetics and skin creams, and in the production of some medicines and animal feeds. BSF larvae process waste streams from a variety of sources into food for some animals and are also used in household composting. Our BSF cell line, designated BCIRL-HiE0122021-SGS, was developed from eggs using the medium CLG#2 (50% L-15 + 50% EX-CELL 420, with 9% FBS and antibiotics), with many other media being tested. This cell line consists of attached cells with a variety of morphologies and its identity was authenticated using CO1 barcoding. A growth curve was generated and the resulting doubling time was 118 h. We quantified the fatty acid methyl esters (FAMES) and recorded the expected range of saturated, monounsaturated, and polyunsaturated FAMEs, with only trace levels of lauric acid being noted. The BSF cell line is available free of charge by request.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00934-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Insect cell lines are effective tools used in industry and academia. For example, they are used in screening potential insecticides, in making certain proteins for biomedical applications, and in basic research into insect biology. So far, there are no cell lines derived from the black soldier fly, Hermetia illucens (BSF). This may become an issue because BSFs are employed in a range of industrial and household processes. BSFs are used in producing biodiesel, in developing cosmetics and skin creams, and in the production of some medicines and animal feeds. BSF larvae process waste streams from a variety of sources into food for some animals and are also used in household composting. Our BSF cell line, designated BCIRL-HiE0122021-SGS, was developed from eggs using the medium CLG#2 (50% L-15 + 50% EX-CELL 420, with 9% FBS and antibiotics), with many other media being tested. This cell line consists of attached cells with a variety of morphologies and its identity was authenticated using CO1 barcoding. A growth curve was generated and the resulting doubling time was 118 h. We quantified the fatty acid methyl esters (FAMES) and recorded the expected range of saturated, monounsaturated, and polyunsaturated FAMEs, with only trace levels of lauric acid being noted. The BSF cell line is available free of charge by request.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从黑兵蝇(Hermetia illucens,双翅目:Stratiomyidae)中提取的细胞系。
昆虫细胞系是工业界和学术界使用的有效工具。例如,它们可用于筛选潜在的杀虫剂、制造某些用于生物医学的蛋白质,以及昆虫生物学的基础研究。迄今为止,还没有从黑实蝇(Hermetia illucens,BSF)中提取的细胞系。这可能会成为一个问题,因为 BSF 被用于一系列工业和家庭流程。BSF 被用于生产生物柴油、开发化妆品和护肤霜,以及生产某些药物和动物饲料。BSF 幼虫可将各种来源的废物加工成一些动物的食物,也可用于家庭堆肥。我们的 BSF 细胞系被命名为 BCIRL-HiE0122021-SGS,是使用 CLG#2 培养基(50% L-15 + 50% EX-CELL 420,含 9% FBS 和抗生素)从卵中培育出来的。该细胞系由形态各异的附着细胞组成,其身份已通过 CO1 条形码验证。我们对脂肪酸甲酯(FAMES)进行了量化,记录了预期范围内的饱和、单不饱和和多不饱和脂肪酸甲酯,只发现了微量的月桂酸。BSF 细胞系可应要求免费提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
期刊最新文献
Efficacy determination of a disinfectant against channel catfish virus by in vitro and in vivo methods. Preliminary study on the potential damage of cigarette smoke extract in 3D human chondrocyte culture. Expression, prognosis, immunological infiltration, and DNA methylation of members of the SFRP gene family in colorectal cancer: a comparative bioinformatic and experimental analysis. OPA3 inhibits the cGAS-STING pathway mediated by mtDNA stress to promote colorectal cancer progression. Maxing Yigan formula promotes cartilage regeneration by regulating chondrocyte autophagy in osteoarthritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1