Kane Yoon, Stephanie Williams, Elizabeth J. Duncan
{"title":"DNA methylation machinery is involved in development and reproduction in the viviparous pea aphid (Acyrthosiphon pisum)","authors":"Kane Yoon, Stephanie Williams, Elizabeth J. Duncan","doi":"10.1111/imb.12936","DOIUrl":null,"url":null,"abstract":"<p>Epigenetic mechanisms, such as DNA methylation, have been proposed to mediate plastic responses in insects. The pea aphid (<i>Acyrthosiphon pisum</i>), like the majority of extant aphids, displays cyclical parthenogenesis - the ability of mothers to switch the reproductive mode of their offspring from reproducing parthenogenetically to sexually in response to environmental cues. The pea aphid genome encodes two paralogs of the de novo DNA methyltransferase gene, <i>dnmt3a</i> and <i>dnmt3x</i>. Here we show, using phylogenetic analysis, that this gene duplication event occurred at least 150 million years ago, likely after the divergence of the lineage leading to the Aphidomorpha (phylloxerans, adelgids and true aphids) from that leading to the scale insects (Coccomorpha) and that the two paralogs are maintained in the genomes of all aphids examined. We also show that the mRNA of both <i>dnmt3</i> paralogs is maternally expressed in the viviparous aphid ovary. During development both paralogs are expressed in the germ cells of embryos beginning at stage 5 and persisting throughout development. Treatment with 5-azactyidine, a chemical that generally inhibits the DNA methylation machinery, leads to defects of oocytes and early-stage embryos and causes a proportion of later stage embryos to be born dead or die soon after birth. These phenotypes suggest a role for DNA methyltransferases in reproduction, consistent with that seen in other insects. Taking the vast evolutionary history of the <i>dnmt3</i> paralogs, and the localisation of their mRNAs in the ovary, we suggest there is a role for <i>dnmt3a</i> and/or <i>dnmt3x</i> in early development, and a role for DNA methylation machinery in reproduction and development of the viviparous pea aphid.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12936","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imb.12936","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epigenetic mechanisms, such as DNA methylation, have been proposed to mediate plastic responses in insects. The pea aphid (Acyrthosiphon pisum), like the majority of extant aphids, displays cyclical parthenogenesis - the ability of mothers to switch the reproductive mode of their offspring from reproducing parthenogenetically to sexually in response to environmental cues. The pea aphid genome encodes two paralogs of the de novo DNA methyltransferase gene, dnmt3a and dnmt3x. Here we show, using phylogenetic analysis, that this gene duplication event occurred at least 150 million years ago, likely after the divergence of the lineage leading to the Aphidomorpha (phylloxerans, adelgids and true aphids) from that leading to the scale insects (Coccomorpha) and that the two paralogs are maintained in the genomes of all aphids examined. We also show that the mRNA of both dnmt3 paralogs is maternally expressed in the viviparous aphid ovary. During development both paralogs are expressed in the germ cells of embryos beginning at stage 5 and persisting throughout development. Treatment with 5-azactyidine, a chemical that generally inhibits the DNA methylation machinery, leads to defects of oocytes and early-stage embryos and causes a proportion of later stage embryos to be born dead or die soon after birth. These phenotypes suggest a role for DNA methyltransferases in reproduction, consistent with that seen in other insects. Taking the vast evolutionary history of the dnmt3 paralogs, and the localisation of their mRNAs in the ovary, we suggest there is a role for dnmt3a and/or dnmt3x in early development, and a role for DNA methylation machinery in reproduction and development of the viviparous pea aphid.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).