{"title":"A novel recombinant adenovirus expressing apoptin and melittin genes kills hepatocellular carcinoma cells and inhibits the growth of ectopic tumor.","authors":"Jingqiao Wu, Zhaoyu Lan, Xin Li, Jinling He, Dongchao Zhang, Tianming Jin","doi":"10.1007/s10637-024-01453-z","DOIUrl":null,"url":null,"abstract":"<p><p>HCC is the most common fatal malignancy. Although surgical resection is the primary treatment strategy, most patients are not eligible for resection due to tumor heterogeneity, underlying liver disease, or comorbidities. Therefore, this study explores the possibility of multi-molecular targeted drug delivery in treating HCC. In this study, we constructed the recombinant adenovirus co-expressing apoptin and melittin (MEL) genes. The inhibitory effect of the recombinant adenovirus on hepatocellular carcinoma cells was detected through experiments on cell apoptosis, migration, invasion, and other factors. The tumor inhibitory effect in vivo was assessed using subcutaneous HCC mice. Results showed that recombinant adenovirus co-expressing anti-tumor genes TAT and apoptin, RGD and MEL can significantly inhibit the proliferation, migration, and invasion of HCC cells by inducing an increase in reactive oxygen species (ROS) levels, upregulation of apoptotic proteins such as Bax, cleaved caspase-3, and cleaved caspase-9, and downregulation of the anti-apoptotic protein Bcl-2. In subcutaneous HCC mice, recombinant adenovirus induced significant apoptosis in tumor, and inhibited tumor growth. In conclusion, recombinant adenovirus co-expressing apoptin and MEL can inhibit the growth and proliferation of tumor cells both in vivo and in vitro.</p>","PeriodicalId":14513,"journal":{"name":"Investigational New Drugs","volume":" ","pages":"428-441"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigational New Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10637-024-01453-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
HCC is the most common fatal malignancy. Although surgical resection is the primary treatment strategy, most patients are not eligible for resection due to tumor heterogeneity, underlying liver disease, or comorbidities. Therefore, this study explores the possibility of multi-molecular targeted drug delivery in treating HCC. In this study, we constructed the recombinant adenovirus co-expressing apoptin and melittin (MEL) genes. The inhibitory effect of the recombinant adenovirus on hepatocellular carcinoma cells was detected through experiments on cell apoptosis, migration, invasion, and other factors. The tumor inhibitory effect in vivo was assessed using subcutaneous HCC mice. Results showed that recombinant adenovirus co-expressing anti-tumor genes TAT and apoptin, RGD and MEL can significantly inhibit the proliferation, migration, and invasion of HCC cells by inducing an increase in reactive oxygen species (ROS) levels, upregulation of apoptotic proteins such as Bax, cleaved caspase-3, and cleaved caspase-9, and downregulation of the anti-apoptotic protein Bcl-2. In subcutaneous HCC mice, recombinant adenovirus induced significant apoptosis in tumor, and inhibited tumor growth. In conclusion, recombinant adenovirus co-expressing apoptin and MEL can inhibit the growth and proliferation of tumor cells both in vivo and in vitro.
期刊介绍:
The development of new anticancer agents is one of the most rapidly changing aspects of cancer research. Investigational New Drugs provides a forum for the rapid dissemination of information on new anticancer agents. The papers published are of interest to the medical chemist, toxicologist, pharmacist, pharmacologist, biostatistician and clinical oncologist. Investigational New Drugs provides the fastest possible publication of new discoveries and results for the whole community of scientists developing anticancer agents.