Marc Ramos-Llorens, Roberto Bello-Madruga, Javier Valle, David Andreu, Marc Torrent
{"title":"PyAMPA: a high-throughput prediction and optimization tool for antimicrobial peptides.","authors":"Marc Ramos-Llorens, Roberto Bello-Madruga, Javier Valle, David Andreu, Marc Torrent","doi":"10.1128/msystems.01358-23","DOIUrl":null,"url":null,"abstract":"<p><p>The alarming rise of antibiotic-resistant bacterial infections is driving efforts to develop alternatives to conventional antibiotics. In this context, antimicrobial peptides (AMPs) have emerged as promising candidates for their ability to target a broad range of microorganisms. However, the development of AMPs with optimal potency, selectivity, and/or stability profiles remains a challenge. To address it, computational tools for predicting AMP properties and designing novel peptides have gained increasing attention. PyAMPA is a novel platform for AMP discovery. It consists of five modules, namely AMPScreen, AMPValidate, AMPSolve, AMPMutate, and AMPOptimize, that allow high-throughput proteome inspection, candidate screening, and optimization through point-mutation and genetic algorithms. The platform also offers additional tools for predicting and evaluating AMP properties, including antimicrobial and cytotoxic activity, and peptide half-life. By providing innovative and accessible inroads into AMP motifs in proteomes, PyAMPA will enable advances in AMP development and potential translation into clinically useful molecules. PyAMPA is available at: https://github.com/SysBioUAB/PyAMPA.</p><p><strong>Importance: </strong>This paper introduces PyAMPA, a new bioinformatics platform designed for the discovery and optimization of antimicrobial peptides (AMPs). It addresses the urgent need for new antimicrobials due to the rise of antibiotic-resistant infections. PyAMPA, with its five predictive modules -AMPScreen, AMPValidate, AMPSolve, AMPMutate and AMPOptimize, enables high-throughput screening of proteomes to identify potential AMP motifs and optimize them for clinical use. Its unique approach, combining prediction, design, and optimization tools, makes PyAMPA a robust solution for developing new AMP-based therapies, offering a significant advance in combatting antibiotic resistance.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264690/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.01358-23","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The alarming rise of antibiotic-resistant bacterial infections is driving efforts to develop alternatives to conventional antibiotics. In this context, antimicrobial peptides (AMPs) have emerged as promising candidates for their ability to target a broad range of microorganisms. However, the development of AMPs with optimal potency, selectivity, and/or stability profiles remains a challenge. To address it, computational tools for predicting AMP properties and designing novel peptides have gained increasing attention. PyAMPA is a novel platform for AMP discovery. It consists of five modules, namely AMPScreen, AMPValidate, AMPSolve, AMPMutate, and AMPOptimize, that allow high-throughput proteome inspection, candidate screening, and optimization through point-mutation and genetic algorithms. The platform also offers additional tools for predicting and evaluating AMP properties, including antimicrobial and cytotoxic activity, and peptide half-life. By providing innovative and accessible inroads into AMP motifs in proteomes, PyAMPA will enable advances in AMP development and potential translation into clinically useful molecules. PyAMPA is available at: https://github.com/SysBioUAB/PyAMPA.
Importance: This paper introduces PyAMPA, a new bioinformatics platform designed for the discovery and optimization of antimicrobial peptides (AMPs). It addresses the urgent need for new antimicrobials due to the rise of antibiotic-resistant infections. PyAMPA, with its five predictive modules -AMPScreen, AMPValidate, AMPSolve, AMPMutate and AMPOptimize, enables high-throughput screening of proteomes to identify potential AMP motifs and optimize them for clinical use. Its unique approach, combining prediction, design, and optimization tools, makes PyAMPA a robust solution for developing new AMP-based therapies, offering a significant advance in combatting antibiotic resistance.
mSystemsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍:
mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.