Alisha Guyett, Nicole Lovato, Jack Manners, Nicole Stuart, Barbara Toson, Bastien Lechat, Leon Lack, Gorica Micic, Siobhan Banks, Jillian Dorrian, Eva Kemps, Andrew Vakulin, Robert Adams, Danny J Eckert, Hannah Scott, Peter Catcheside
{"title":"A circadian-informed lighting intervention accelerates circadian adjustment to a night work schedule in a submarine lighting environment.","authors":"Alisha Guyett, Nicole Lovato, Jack Manners, Nicole Stuart, Barbara Toson, Bastien Lechat, Leon Lack, Gorica Micic, Siobhan Banks, Jillian Dorrian, Eva Kemps, Andrew Vakulin, Robert Adams, Danny J Eckert, Hannah Scott, Peter Catcheside","doi":"10.1093/sleep/zsae146","DOIUrl":null,"url":null,"abstract":"<p><strong>Study objective: </strong>Night work has detrimental impacts on sleep and performance, primarily due to misalignment between sleep-wake schedules and underlying circadian rhythms. This study tested whether circadian-informed lighting accelerated circadian phase delay, and thus adjustment to night work, compared to blue-depleted standard lighting under simulated submariner work conditions.</p><p><strong>Methods: </strong>Nineteen healthy sleepers (12 males; mean ± SD aged 29 ± 10 years) participated in two separate 8-day visits approximately 1 month apart to receive, in random order, circadian-informed lighting (blue-enriched and dim, blue-depleted lighting at specific times) and standard lighting (dim, blue-depleted lighting). After an adaptation night (day 1), salivary dim-light melatonin onset (DLMO) assessment was undertaken from 18:00 to 02:00 on days 2-3. During days 3-7, participants completed simulated night work from 00:00 to 08:00 and a sleep period from 10:00 to 19:00. Post-condition DLMO assessment occurred from 21:00 to 13:00 on days 7-8. Ingestible capsules continuously sampled temperature to estimate daily core body temperature minimum (Tmin) time. Tmin and DLMO circadian delays were compared between conditions using mixed effects models.</p><p><strong>Results: </strong>There were significant condition-by-day interactions in Tmin and DLMO delays (both p < .001). After four simulated night shifts, circadian-informed lighting produced a mean [95% CI] 5.6 [3.0 to 8.2] hours greater delay in Tmin timing and a 4.2 [3.0 to 5.5] hours greater delay in DLMO timing compared to standard lighting.</p><p><strong>Conclusions: </strong>Circadian-informed lighting accelerates adjustment to shiftwork in a simulated submariner work environment. Circadian lighting interventions warrant consideration in any dimly lit and blue-depleted work environments where circadian adjustment is relevant to help enhance human performance, safety, and health.</p>","PeriodicalId":22018,"journal":{"name":"Sleep","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsae146","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Study objective: Night work has detrimental impacts on sleep and performance, primarily due to misalignment between sleep-wake schedules and underlying circadian rhythms. This study tested whether circadian-informed lighting accelerated circadian phase delay, and thus adjustment to night work, compared to blue-depleted standard lighting under simulated submariner work conditions.
Methods: Nineteen healthy sleepers (12 males; mean ± SD aged 29 ± 10 years) participated in two separate 8-day visits approximately 1 month apart to receive, in random order, circadian-informed lighting (blue-enriched and dim, blue-depleted lighting at specific times) and standard lighting (dim, blue-depleted lighting). After an adaptation night (day 1), salivary dim-light melatonin onset (DLMO) assessment was undertaken from 18:00 to 02:00 on days 2-3. During days 3-7, participants completed simulated night work from 00:00 to 08:00 and a sleep period from 10:00 to 19:00. Post-condition DLMO assessment occurred from 21:00 to 13:00 on days 7-8. Ingestible capsules continuously sampled temperature to estimate daily core body temperature minimum (Tmin) time. Tmin and DLMO circadian delays were compared between conditions using mixed effects models.
Results: There were significant condition-by-day interactions in Tmin and DLMO delays (both p < .001). After four simulated night shifts, circadian-informed lighting produced a mean [95% CI] 5.6 [3.0 to 8.2] hours greater delay in Tmin timing and a 4.2 [3.0 to 5.5] hours greater delay in DLMO timing compared to standard lighting.
Conclusions: Circadian-informed lighting accelerates adjustment to shiftwork in a simulated submariner work environment. Circadian lighting interventions warrant consideration in any dimly lit and blue-depleted work environments where circadian adjustment is relevant to help enhance human performance, safety, and health.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.