[An ensemble model for assisting early Alzheimer's disease diagnosis based on structural magnetic resonance imaging with dual-time-point fusion].

An Zeng, Jianbin Wang, Dan Pan, Yang Yang, Jun Liu, Xin Liu, Wenge Chen, Juhua Wu
{"title":"[An ensemble model for assisting early Alzheimer's disease diagnosis based on structural magnetic resonance imaging with dual-time-point fusion].","authors":"An Zeng, Jianbin Wang, Dan Pan, Yang Yang, Jun Liu, Xin Liu, Wenge Chen, Juhua Wu","doi":"10.7507/1001-5515.202310046","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's Disease (AD) is a progressive neurodegenerative disorder. Due to the subtlety of symptoms in the early stages of AD, rapid and accurate clinical diagnosis is challenging, leading to a high rate of misdiagnosis. Current research on early diagnosis of AD has not sufficiently focused on tracking the progression of the disease over an extended period in subjects. To address this issue, this paper proposes an ensemble model for assisting early diagnosis of AD that combines structural magnetic resonance imaging (sMRI) data from two time points with clinical information. The model employs a three-dimensional convolutional neural network (3DCNN) and twin neural network modules to extract features from the sMRI data of subjects at two time points, while a multi-layer perceptron (MLP) is used to model the clinical information of the subjects. The objective is to extract AD-related features from the multi-modal data of the subjects as much as possible, thereby enhancing the diagnostic performance of the ensemble model. Experimental results show that based on this model, the classification accuracy rate is 89% for differentiating AD patients from normal controls (NC), 88% for differentiating mild cognitive impairment converting to AD (MCIc) from NC, and 69% for distinguishing non-converting mild cognitive impairment (MCInc) from MCIc, confirming the effectiveness and efficiency of the proposed method for early diagnosis of AD, as well as its potential to play a supportive role in the clinical diagnosis of early Alzheimer's disease.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 3","pages":"485-493"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202310046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder. Due to the subtlety of symptoms in the early stages of AD, rapid and accurate clinical diagnosis is challenging, leading to a high rate of misdiagnosis. Current research on early diagnosis of AD has not sufficiently focused on tracking the progression of the disease over an extended period in subjects. To address this issue, this paper proposes an ensemble model for assisting early diagnosis of AD that combines structural magnetic resonance imaging (sMRI) data from two time points with clinical information. The model employs a three-dimensional convolutional neural network (3DCNN) and twin neural network modules to extract features from the sMRI data of subjects at two time points, while a multi-layer perceptron (MLP) is used to model the clinical information of the subjects. The objective is to extract AD-related features from the multi-modal data of the subjects as much as possible, thereby enhancing the diagnostic performance of the ensemble model. Experimental results show that based on this model, the classification accuracy rate is 89% for differentiating AD patients from normal controls (NC), 88% for differentiating mild cognitive impairment converting to AD (MCIc) from NC, and 69% for distinguishing non-converting mild cognitive impairment (MCInc) from MCIc, confirming the effectiveness and efficiency of the proposed method for early diagnosis of AD, as well as its potential to play a supportive role in the clinical diagnosis of early Alzheimer's disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[基于结构磁共振成像与双时间点融合的早期阿尔茨海默病辅助诊断集合模型]。
阿尔茨海默病(AD)是一种进行性神经退行性疾病。由于阿尔茨海默病早期症状不明显,快速准确的临床诊断具有挑战性,因此误诊率很高。目前,有关注意力缺失症早期诊断的研究还没有充分关注对受试者疾病进展的长期跟踪。为解决这一问题,本文提出了一种将两个时间点的结构性磁共振成像(sMRI)数据与临床信息相结合的组合模型,用于辅助早期诊断注意力缺失症。该模型采用三维卷积神经网络(3DCNN)和孪生神经网络模块从受试者两个时间点的 sMRI 数据中提取特征,同时采用多层感知器(MLP)对受试者的临床信息进行建模。目的是从受试者的多模态数据中尽可能多地提取与注意力缺失症相关的特征,从而提高集合模型的诊断性能。实验结果表明,基于该模型,AD 患者与正常对照组(NC)的分类准确率为 89%,转为 AD 的轻度认知障碍(MCIc)与 NC 的分类准确率为 88%,未转为 AD 的轻度认知障碍(MCInc)与 MCIc 的分类准确率为 69%,证实了该方法在 AD 早期诊断中的有效性和高效性,并有望在早期阿尔茨海默病的临床诊断中发挥辅助作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
期刊最新文献
[A lightweight convolutional neural network for myositis classification from muscle ultrasound images]. [A review on depth perception techniques in organoid images]. [Advances in nanostructured surfaces for enhanced mechano-bactericidal applications]. [Advances in the diagnosis of prostate cancer based on image fusion]. [Analysis of nerve excitability in the dentate gyrus of the hippocampus in cerebral ischaemia-reperfusion mice].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1