{"title":"Risk and safety profile in checkpoint inhibitors on non-small-cel lung cancer: A systematic review.","authors":"Sara Maria Majernikova","doi":"10.1080/21645515.2024.2365771","DOIUrl":null,"url":null,"abstract":"<p><p>Treating non-small-cell lung cancer (NSCLC) has gained increased importance in recent years due to the high mortality rate and dismal five-year survival rate. Immune checkpoint inhibitors (ICI) are a promising approach with exceptional outcomes in NSCLC thanks to the antigenic nature of cells. Conversely, immune system over-stimulation with ICI is a double-edged sword that can lead to various negative effects ranging from mild to life-threatening. This review explores current breakthroughs in nanoparticle-based ICI and their limitations. The PubMed, Scopus and Web of Science were examined for relevant publications. Thirty-eight trials (<i>N</i> = 16,781) were included in the analyses. The mixed effects analyses on quantifying the treatment effect contributed significantly to the subgroups within studies for ICI treatment effect. Models confirmed ICI's higher impact on treatment effectivity and the decrease in respondents' mortality compared to conventional treatment regiments. ICI might be used as first-line therapy due to their proven effectiveness and safety profile.</p>","PeriodicalId":49067,"journal":{"name":"Human Vaccines & Immunotherapeutics","volume":"20 1","pages":"2365771"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Vaccines & Immunotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/21645515.2024.2365771","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Treating non-small-cell lung cancer (NSCLC) has gained increased importance in recent years due to the high mortality rate and dismal five-year survival rate. Immune checkpoint inhibitors (ICI) are a promising approach with exceptional outcomes in NSCLC thanks to the antigenic nature of cells. Conversely, immune system over-stimulation with ICI is a double-edged sword that can lead to various negative effects ranging from mild to life-threatening. This review explores current breakthroughs in nanoparticle-based ICI and their limitations. The PubMed, Scopus and Web of Science were examined for relevant publications. Thirty-eight trials (N = 16,781) were included in the analyses. The mixed effects analyses on quantifying the treatment effect contributed significantly to the subgroups within studies for ICI treatment effect. Models confirmed ICI's higher impact on treatment effectivity and the decrease in respondents' mortality compared to conventional treatment regiments. ICI might be used as first-line therapy due to their proven effectiveness and safety profile.
期刊介绍:
(formerly Human Vaccines; issn 1554-8619)
Vaccine research and development is extending its reach beyond the prevention of bacterial or viral diseases. There are experimental vaccines for immunotherapeutic purposes and for applications outside of infectious diseases, in diverse fields such as cancer, autoimmunity, allergy, Alzheimer’s and addiction. Many of these vaccines and immunotherapeutics should become available in the next two decades, with consequent benefit for human health. Continued advancement in this field will benefit from a forum that can (A) help to promote interest by keeping investigators updated, and (B) enable an exchange of ideas regarding the latest progress in the many topics pertaining to vaccines and immunotherapeutics.
Human Vaccines & Immunotherapeutics provides such a forum. It is published monthly in a format that is accessible to a wide international audience in the academic, industrial and public sectors.