Hugues Chanteux, Merran MacPherson, Hester Kramer, Christian Otoul, Takuya Okagaki, Chiara Rospo, Steven De Bruyn, Mark Watling, Massimo Bani, David Sciberras
{"title":"Overview of preclinical and clinical studies investigating pharmacokinetics and drug-drug interactions of padsevonil.","authors":"Hugues Chanteux, Merran MacPherson, Hester Kramer, Christian Otoul, Takuya Okagaki, Chiara Rospo, Steven De Bruyn, Mark Watling, Massimo Bani, David Sciberras","doi":"10.1080/17425255.2024.2373108","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Padsevonil is an antiseizure medication candidate intended to benefit patients with drug-resistant epilepsy. Our investigations aimed at characterizing pharmacokinetics and drug-drug interaction (DDI) profile of padsevonil.</p><p><strong>Research design and methods: </strong>An overview of preclinical and clinical pharmacology studies conducted during padsevonil development is provided.</p><p><strong>Results: </strong>In preclinical studies, cytochrome (CYP) 3A4 was identified as the main P450 isoform involved in padsevonil metabolism, with potential minor contribution from CYP2C19. Padsevonil was shown to be a time-dependent CYP2C19-inhibitor, weak CYP3A4-inducer, weak inhibitor of P-gp/OCT1/MATE2-K, and potent OCT2-inhibitor. Initial clinical pharmacology studies in healthy participants showed that padsevonil had (i) good absorption, (ii) clearance mediated mainly by metabolism, and (iii) time-dependent kinetics. A study in genotyped participants confirmed the role of CYP2C19 in clearance and time-dependent kinetics; the major contribution of CYP3A4 was confirmed in DDI studies with CYP3A4-inducers (carbamazepine, oxcarbazepine) and -inhibitor (erythromycin). Padsevonil did not affect pharmacokinetics of valproate/lamotrigine/levetiracetam/oxcarbazepine or oral contraceptives. In a cocktail clinical study, padsevonil showed moderate CYP2C19 inhibition (omeprazole) and weak CYP3A4 induction (oral midazolam). No specific effects on CYP1A2 (caffeine), CYP2C9 (S-warfarin), and CYP2D6 (dextromethorphan) were observed.</p><p><strong>Conclusions: </strong>The studies presented helped in understanding padsevonil disposition and risks of DDIs, which would inform dosing and prescribing.</p><p><strong>Clinical trial registration: </strong>https://www.clinicaltrials.gov identifiers are NCT04131517, NCT03480243, NCT03695094, NCT04075409.</p>","PeriodicalId":94005,"journal":{"name":"Expert opinion on drug metabolism & toxicology","volume":" ","pages":"841-855"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug metabolism & toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425255.2024.2373108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Padsevonil is an antiseizure medication candidate intended to benefit patients with drug-resistant epilepsy. Our investigations aimed at characterizing pharmacokinetics and drug-drug interaction (DDI) profile of padsevonil.
Research design and methods: An overview of preclinical and clinical pharmacology studies conducted during padsevonil development is provided.
Results: In preclinical studies, cytochrome (CYP) 3A4 was identified as the main P450 isoform involved in padsevonil metabolism, with potential minor contribution from CYP2C19. Padsevonil was shown to be a time-dependent CYP2C19-inhibitor, weak CYP3A4-inducer, weak inhibitor of P-gp/OCT1/MATE2-K, and potent OCT2-inhibitor. Initial clinical pharmacology studies in healthy participants showed that padsevonil had (i) good absorption, (ii) clearance mediated mainly by metabolism, and (iii) time-dependent kinetics. A study in genotyped participants confirmed the role of CYP2C19 in clearance and time-dependent kinetics; the major contribution of CYP3A4 was confirmed in DDI studies with CYP3A4-inducers (carbamazepine, oxcarbazepine) and -inhibitor (erythromycin). Padsevonil did not affect pharmacokinetics of valproate/lamotrigine/levetiracetam/oxcarbazepine or oral contraceptives. In a cocktail clinical study, padsevonil showed moderate CYP2C19 inhibition (omeprazole) and weak CYP3A4 induction (oral midazolam). No specific effects on CYP1A2 (caffeine), CYP2C9 (S-warfarin), and CYP2D6 (dextromethorphan) were observed.
Conclusions: The studies presented helped in understanding padsevonil disposition and risks of DDIs, which would inform dosing and prescribing.
Clinical trial registration: https://www.clinicaltrials.gov identifiers are NCT04131517, NCT03480243, NCT03695094, NCT04075409.