Selective Electroreduction of CO2 to C2+ Alcohols Using Graphitic Frustrated Lewis Pair Catalyst

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-06-25 DOI:10.1021/acscatal.3c04275
Hyun-Tak Kim, Jaehyun Park, Jinhong Mun, HyeonOh Shin, Deok-Ho Roh, Junhyeok Kwon, Sungtae Kim, Sang-Joon Kim, Geunsik Lee*, Seok Ju Kang* and Tae-Hyuk Kwon*, 
{"title":"Selective Electroreduction of CO2 to C2+ Alcohols Using Graphitic Frustrated Lewis Pair Catalyst","authors":"Hyun-Tak Kim,&nbsp;Jaehyun Park,&nbsp;Jinhong Mun,&nbsp;HyeonOh Shin,&nbsp;Deok-Ho Roh,&nbsp;Junhyeok Kwon,&nbsp;Sungtae Kim,&nbsp;Sang-Joon Kim,&nbsp;Geunsik Lee*,&nbsp;Seok Ju Kang* and Tae-Hyuk Kwon*,&nbsp;","doi":"10.1021/acscatal.3c04275","DOIUrl":null,"url":null,"abstract":"<p >Efficient electroreduction of CO<sub>2</sub> to multicarbon products is a complicated reaction because of the high energy barriers for the CO<sub>2</sub> activation and C–C coupling. Here, we design a graphitic frustrated Lewis pair catalyst doped with boron and nitrogen (BN-GFLP) for reducing the amount of CO<sub>2</sub> to multicarbon products. Multicarbon (C<sub>2+</sub>) biofuels (i.e., ethanol and <i>n</i>-propanol) are identified as the major products with a C<sub>2+</sub> Faradaic efficiency of 87.9% at a partial current density of −6.0 mA/cm<sup>2</sup> (C<sub>2+</sub> Faradaic efficiency of 70.7% at a partial current density of −10.6 mA/cm<sup>2</sup>). Furthermore, density functional theory calculations reveal that the dual binding site of FLP reduces the reaction free energies required for CO<sub>2</sub> activation and C–C coupling. Consequently, energetically favorable CO<sub>2</sub> reduction pathways are proposed, and selectivities for the production of ethanol and <i>n</i>-propanol are determined. Based on our results, we propose a molecular design strategy for the selective CO<sub>2</sub> reduction catalysts aimed at facilitating C<sub>2+</sub> alcohols production.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.3c04275","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient electroreduction of CO2 to multicarbon products is a complicated reaction because of the high energy barriers for the CO2 activation and C–C coupling. Here, we design a graphitic frustrated Lewis pair catalyst doped with boron and nitrogen (BN-GFLP) for reducing the amount of CO2 to multicarbon products. Multicarbon (C2+) biofuels (i.e., ethanol and n-propanol) are identified as the major products with a C2+ Faradaic efficiency of 87.9% at a partial current density of −6.0 mA/cm2 (C2+ Faradaic efficiency of 70.7% at a partial current density of −10.6 mA/cm2). Furthermore, density functional theory calculations reveal that the dual binding site of FLP reduces the reaction free energies required for CO2 activation and C–C coupling. Consequently, energetically favorable CO2 reduction pathways are proposed, and selectivities for the production of ethanol and n-propanol are determined. Based on our results, we propose a molecular design strategy for the selective CO2 reduction catalysts aimed at facilitating C2+ alcohols production.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用石墨受挫路易斯对催化剂选择性电还原 CO2 到 C2+ 醇
将二氧化碳高效电还原成多碳产物是一个复杂的反应,因为二氧化碳活化和 C-C 偶联的能量障碍很高。在此,我们设计了一种掺杂硼和氮的石墨沮度路易斯对催化剂(BN-GFLP),用于将二氧化碳还原成多碳产物。多碳(C2+)生物燃料(即乙醇和正丙醇)被确定为主要产品,在局部电流密度为 -6.0 mA/cm2 时,C2+ 法拉第效率为 87.9%(在局部电流密度为 -10.6 mA/cm2 时,C2+ 法拉第效率为 70.7%)。此外,密度泛函理论计算显示,FLP 的双重结合位点降低了二氧化碳活化和 C-C 耦合所需的反应自由能。因此,我们提出了对能量有利的二氧化碳还原途径,并确定了生产乙醇和正丙醇的选择性。根据我们的研究结果,我们提出了旨在促进 C2+ 醇类生产的选择性 CO2 还原催化剂的分子设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Investigation of Ethane Dehydrogenation and Hydrogenolysis on Pt(111), Pt(211), and Pt(100): Bayesian Quantification and Correction of DFT-Based Enthalpic and Entropic Uncertainties Site-Selective Pyridine Carbamoylation Enabled by Consecutive Photoinduced Electron Transfer Asymmetric Hydrogenation of Naphthalenes with Molybdenum Catalysts: Ligand Design Improves Chemoselectivity A Highly Stereoselective and Efficient Biocatalytic Synthesis of Chiral Syn-Aryl β-Hydroxy α-Amino Esters Dynamic Activation of Single-Atom Catalysts by Reaction Intermediates: Conversion of Formic Acid on Rh/Fe3O4(001)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1