Jiaqi Xu;Hatice Gunes;Keerthy Kusumam;Michel Valstar;Siyang Song
{"title":"Two-Stage Temporal Modelling Framework for Video-Based Depression Recognition Using Graph Representation","authors":"Jiaqi Xu;Hatice Gunes;Keerthy Kusumam;Michel Valstar;Siyang Song","doi":"10.1109/TAFFC.2024.3415770","DOIUrl":null,"url":null,"abstract":"Video-based automatic depression analysis provides a fast, objective and repeatable self-assessment solution, which has been widely developed in recent years. While depression cues may be reflected by human facial behaviours of various temporal scales, most existing approaches either focused on modelling depression from short-term or video-level facial behaviours. In this sense, we propose a two-stage framework that models depression severity from multi-scale short-term and video-level facial behaviours. The short-term depressive behaviour modelling stage first deep learns depression-related facial behavioural features from multiple short temporal scales, where a Depression Feature Enhancement (DFE) module is proposed to enhance the depression-related cues for all temporal scales and remove non-depression related noise. Two novel graph encoding strategies are proposed in the video-level depressive behavior modeling stage, i.e., Sequential Graph Representation (SEG) and Spectral Graph Representation (SPG), to re-encode all short-term features of the target video into a video-level graph representation, summarizing depression-related multi-scale video-level temporal information. As a result, the produced graph representations predict depression severity using both short-term and long-term facial behaviour patterns. The experimental results on AVEC 2013, AVEC 2014 and AVEC 2019 datasets show that the proposed DFE module constantly enhanced the depression severity estimation performance for various CNN models while the SPG is superior than other video-level modelling methods. More importantly, the result achieved for the proposed two-stage framework shows its promising and solid performance compared to widely-used one-stage modelling approaches.","PeriodicalId":13131,"journal":{"name":"IEEE Transactions on Affective Computing","volume":"16 1","pages":"161-178"},"PeriodicalIF":9.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Affective Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10572478/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Video-based automatic depression analysis provides a fast, objective and repeatable self-assessment solution, which has been widely developed in recent years. While depression cues may be reflected by human facial behaviours of various temporal scales, most existing approaches either focused on modelling depression from short-term or video-level facial behaviours. In this sense, we propose a two-stage framework that models depression severity from multi-scale short-term and video-level facial behaviours. The short-term depressive behaviour modelling stage first deep learns depression-related facial behavioural features from multiple short temporal scales, where a Depression Feature Enhancement (DFE) module is proposed to enhance the depression-related cues for all temporal scales and remove non-depression related noise. Two novel graph encoding strategies are proposed in the video-level depressive behavior modeling stage, i.e., Sequential Graph Representation (SEG) and Spectral Graph Representation (SPG), to re-encode all short-term features of the target video into a video-level graph representation, summarizing depression-related multi-scale video-level temporal information. As a result, the produced graph representations predict depression severity using both short-term and long-term facial behaviour patterns. The experimental results on AVEC 2013, AVEC 2014 and AVEC 2019 datasets show that the proposed DFE module constantly enhanced the depression severity estimation performance for various CNN models while the SPG is superior than other video-level modelling methods. More importantly, the result achieved for the proposed two-stage framework shows its promising and solid performance compared to widely-used one-stage modelling approaches.
期刊介绍:
The IEEE Transactions on Affective Computing is an international and interdisciplinary journal. Its primary goal is to share research findings on the development of systems capable of recognizing, interpreting, and simulating human emotions and related affective phenomena. The journal publishes original research on the underlying principles and theories that explain how and why affective factors shape human-technology interactions. It also focuses on how techniques for sensing and simulating affect can enhance our understanding of human emotions and processes. Additionally, the journal explores the design, implementation, and evaluation of systems that prioritize the consideration of affect in their usability. We also welcome surveys of existing work that provide new perspectives on the historical and future directions of this field.