Yang Huang, Qikang Feng, Tigran Khachaturyants, Huawei Zhang, Jifeng Liu, Juntai Shen, Timothy C. Beers, Youjun Lu, Song Wang, Haibo Yuan
{"title":"A slightly oblate dark matter halo revealed by a retrograde precessing Galactic disk warp","authors":"Yang Huang, Qikang Feng, Tigran Khachaturyants, Huawei Zhang, Jifeng Liu, Juntai Shen, Timothy C. Beers, Youjun Lu, Song Wang, Haibo Yuan","doi":"10.1038/s41550-024-02309-5","DOIUrl":null,"url":null,"abstract":"The shape of the dark matter (DM) halo is key to understanding the hierarchical formation of the Galaxy. Despite extensive efforts in recent decades, however, its shape remains a matter of debate, with suggestions ranging from strongly oblate to prolate. Here, we present a new constraint on its present shape by directly measuring the evolution of the Galactic disk warp with time, as traced by accurate distance estimates and precise age determinations for about 2,600 classical Cepheids. We show that the Galactic warp is mildly precessing in a retrograde direction at a rate of ω = −2.1 ± 0.5 (statistical) ± 0.6 (systematic) km s−1 kpc−1 for the outer disk over the Galactocentric radius [7.5, 25] kpc, decreasing with radius. This constrains the shape of the DM halo to be slightly oblate with a flattening (minor axis to major axis ratio) in the range 0.84 ≤ qΦ ≤ 0.96. Given the young nature of the disk warp traced by Cepheids (less than 200 Myr), our approach directly measures the shape of the present-day DM halo. This measurement, combined with other measurements from older tracers, could provide vital constraints on the evolution of the DM halo and the assembly history of the Galaxy. Using a sample of more than 2,600 classical Cepheids with precise distances and ages, Huang et al. have discovered that the Milky Way’s disk warp undergoes retrograde precession, revealing the presence of a slightly oblate dark matter halo.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":null,"pages":null},"PeriodicalIF":12.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41550-024-02309-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The shape of the dark matter (DM) halo is key to understanding the hierarchical formation of the Galaxy. Despite extensive efforts in recent decades, however, its shape remains a matter of debate, with suggestions ranging from strongly oblate to prolate. Here, we present a new constraint on its present shape by directly measuring the evolution of the Galactic disk warp with time, as traced by accurate distance estimates and precise age determinations for about 2,600 classical Cepheids. We show that the Galactic warp is mildly precessing in a retrograde direction at a rate of ω = −2.1 ± 0.5 (statistical) ± 0.6 (systematic) km s−1 kpc−1 for the outer disk over the Galactocentric radius [7.5, 25] kpc, decreasing with radius. This constrains the shape of the DM halo to be slightly oblate with a flattening (minor axis to major axis ratio) in the range 0.84 ≤ qΦ ≤ 0.96. Given the young nature of the disk warp traced by Cepheids (less than 200 Myr), our approach directly measures the shape of the present-day DM halo. This measurement, combined with other measurements from older tracers, could provide vital constraints on the evolution of the DM halo and the assembly history of the Galaxy. Using a sample of more than 2,600 classical Cepheids with precise distances and ages, Huang et al. have discovered that the Milky Way’s disk warp undergoes retrograde precession, revealing the presence of a slightly oblate dark matter halo.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.