Spin-State Manipulation in a Luminescent Diradical Polymer

IF 5.1 1区 化学 Q1 POLYMER SCIENCE Macromolecules Pub Date : 2024-06-27 DOI:10.1021/acs.macromol.4c00895
Shengjie Wang, Xing Wang, Junshuai Ding, Zihao Zhu, Jingmin Wang, Li Shen, Alim Abdurahman*, Geyu Lu, Jianpu Wang* and Qiming Peng*, 
{"title":"Spin-State Manipulation in a Luminescent Diradical Polymer","authors":"Shengjie Wang,&nbsp;Xing Wang,&nbsp;Junshuai Ding,&nbsp;Zihao Zhu,&nbsp;Jingmin Wang,&nbsp;Li Shen,&nbsp;Alim Abdurahman*,&nbsp;Geyu Lu,&nbsp;Jianpu Wang* and Qiming Peng*,&nbsp;","doi":"10.1021/acs.macromol.4c00895","DOIUrl":null,"url":null,"abstract":"<p >Controlling the spin states to modulate their optical properties is crucial for spintronics and emerging quantum technologies. Open-shell luminescent diradicals are promising candidates for achieving this goal due to the independent spins. However, achieving spin-optical modulation in traditional diradicals still faces significant challenges owing to low luminescence efficiency and inevitable aggregate effects. In this study, we first achieved efficient luminescence of a diradical by suspending luminescent diradicals on a polymer main chain. The resulting diradical polymer exhibits a high photoluminescence efficiency of 44.0% in the condensed state along with excellent photostability. Most importantly, we have demonstrated successful spin-state manipulation through temperature control and application of a magnetic field. These findings open up new avenues for spin-optical modulation based on luminescent diradical materials, providing important guidance for the development spin-optoelectronics.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.4c00895","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling the spin states to modulate their optical properties is crucial for spintronics and emerging quantum technologies. Open-shell luminescent diradicals are promising candidates for achieving this goal due to the independent spins. However, achieving spin-optical modulation in traditional diradicals still faces significant challenges owing to low luminescence efficiency and inevitable aggregate effects. In this study, we first achieved efficient luminescence of a diradical by suspending luminescent diradicals on a polymer main chain. The resulting diradical polymer exhibits a high photoluminescence efficiency of 44.0% in the condensed state along with excellent photostability. Most importantly, we have demonstrated successful spin-state manipulation through temperature control and application of a magnetic field. These findings open up new avenues for spin-optical modulation based on luminescent diradical materials, providing important guidance for the development spin-optoelectronics.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发光二叉聚合物中的自旋态操纵
控制自旋态以调节其光学特性对于自旋电子学和新兴量子技术至关重要。由于具有独立的自旋,开壳发光二拉德环有望实现这一目标。然而,由于发光效率低和不可避免的聚合效应,在传统的二拉锥类化合物中实现自旋光学调制仍然面临着巨大的挑战。在这项研究中,我们首先通过在聚合物主链上悬浮发光的二拉锥体,实现了二拉锥体的高效发光。由此得到的二元对立聚合物在凝聚态下的光致发光效率高达 44.0%,同时还具有极佳的光稳定性。最重要的是,我们通过温度控制和磁场应用成功地实现了自旋态操纵。这些发现为基于发光二叉材料的自旋光学调制开辟了新途径,为开发自旋光电子学提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
期刊最新文献
Solvent-Free One-Pot Recycling of Polylactide to Usable Polymers and Their Closed-Loop Recyclability Correction to “Calcium–Lithium Systems as Innovative Bimetallic Initiators for the Anionic Polymerization of Butadiene: Toward Control and High 1,4-Trans Microstructure” Issue Editorial Masthead Issue Publication Information Role of Bottlebrush Additives on the Structure of Block Copolymers in the Bulk and Thin Films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1