Defect structure–electronic property correlations in transition metal dichalcogenide grain boundaries†

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2024-06-28 DOI:10.1039/D4CP00959B
Srest Somay and Krishna Balasubramanian
{"title":"Defect structure–electronic property correlations in transition metal dichalcogenide grain boundaries†","authors":"Srest Somay and Krishna Balasubramanian","doi":"10.1039/D4CP00959B","DOIUrl":null,"url":null,"abstract":"<p >Grain boundaries (Gb) in transition metal dichalcogenides are a rich source of interesting physics as well as a cause of concern because of its impact on electron transport across them in large area electronic device applications. Here, using first principles calculations, we show that beyond the conventional definition of grain boundaries based on misorientation, the defect structure present at the grain boundaries plays a significant role in defining the local electronic properties. We observed that even the standard 5–7 defect ring has differing electronic characteristics depending on its internal configuration. While the 5–7 ring presents shallow defect states, and induce long range strain fields with the local bandgap increasing up to 32.7%, the other commonly observed 4–8 defect rings introduce only mid-gap states, induce smaller strain fields with no observable bandgap change. The results show the seminal character of the individual defect structures at grain boundaries, and that their relative density can be used to determine the overall physico-chemical properties of the grain boundary.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp00959b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Grain boundaries (Gb) in transition metal dichalcogenides are a rich source of interesting physics as well as a cause of concern because of its impact on electron transport across them in large area electronic device applications. Here, using first principles calculations, we show that beyond the conventional definition of grain boundaries based on misorientation, the defect structure present at the grain boundaries plays a significant role in defining the local electronic properties. We observed that even the standard 5–7 defect ring has differing electronic characteristics depending on its internal configuration. While the 5–7 ring presents shallow defect states, and induce long range strain fields with the local bandgap increasing up to 32.7%, the other commonly observed 4–8 defect rings introduce only mid-gap states, induce smaller strain fields with no observable bandgap change. The results show the seminal character of the individual defect structures at grain boundaries, and that their relative density can be used to determine the overall physico-chemical properties of the grain boundary.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过渡金属二卤化物晶界中的缺陷结构-电子特性相关性
过渡金属二钙化物中的晶界(Gb)是其附近有趣物理现象的丰富来源,也是大面积电子器件应用的一个关注点。在这里,我们利用第一性原理计算显示了晶界错向与局部带隙之间的非单调相关性。内部缺陷结构被认为是关键的区别因素,我们观察到,即使是二维铌中的标准 5-7 缺陷环,也会根据其内部构造表现出不同的特性,从而解释了许多实验异常现象。5-7 缺陷环呈现浅缺陷态、长范围应变场,局部带隙显著增大,而其他常见的 4-8 缺陷环仅引入中隙态、较小的应变场,没有可观察到的带隙变化。研究结果表明了单个缺陷结构的重要特征,它们的相对密度决定了晶界的整体物理化学性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
A first-principles study of organic Lewis bases for passivating tin-based perovskite solar cells. The indanone N-H type excited-state intramolecular proton transfer (ESIPT); the observation of a mechanically induced ESIPT reaction. Simulations of photoinduced processes with the exact factorization: State of the art and perspectives Complete kinetic and photochemical characterization of the multi-step photochromic reaction of DASA Tunable electronic and optoelectronic characteristics of two-dimensional β-AsP monolayer: A first-principles study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1