Anna Salvian, Daniel Farkas, Marina Ramirez-Moreno, Daniela Torruella-Salas, Antonio Berná, Claudio Avignone-Rossa, John R. Varcoe, Abraham Esteve-Núñez, Siddharth Gadkari
{"title":"Resilience of anodic biofilm in microbial fuel cell biosensor for BOD monitoring of urban wastewater","authors":"Anna Salvian, Daniel Farkas, Marina Ramirez-Moreno, Daniela Torruella-Salas, Antonio Berná, Claudio Avignone-Rossa, John R. Varcoe, Abraham Esteve-Núñez, Siddharth Gadkari","doi":"10.1038/s41545-024-00350-5","DOIUrl":null,"url":null,"abstract":"Efficient wastewater treatment monitoring is vital for addressing water scarcity. Microbial fuel cells (MFCs) have emerged as real-time biosensors for biochemical oxygen demand (BOD) in urban wastewater. Discrepancies in signal generation may arise due to changes in the composition and metabolism of mixed-culture electroactive biofilms stemming from different wastewater compositions. In this study, 3D-printed MFC-based biosensors were employed to assess the BOD of sterile complex artificial wastewater and untreated urban wastewater. Alterations in the microbial composition of the anode were evaluated using 16S rRNA sequencing and metagenomics analysis. Results show that MFC-based biosensors can be effectively recalibrated for diverse types of wastewater, maintaining consistent sensitivity (0.64 ± 0.10 mA L mg−1 m−2 with synthetic wastewater and 0.78 ± 0.13 mA L mg−1 m−2 with urban wastewater) and limit of detection (49 ± 8 mg L−1 for synthetic wastewater and 44 ± 7 mg L−1 for urban wastewater). Crucially, pre-sterilization, conductivity adjustments, and nitrogen purging of wastewater are not required before its introduction into the biosensor. However, the presence of native aerobic microorganisms in the wastewater might affect the current output. Metagenomics and taxonomic analyses revealed that the alterations in biofilm composition are predominantly in response to the varied chemical and microbiological compositions of different substrates. Despite variations in anodic biofilm composition, the MFC-based biosensor maintains a relative error comparable to the standard BOD test. This highlights the resilience and flexibility of the biosensor when directly used with a variety of wastewater types before full biofilm adjustment.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-12"},"PeriodicalIF":10.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00350-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00350-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient wastewater treatment monitoring is vital for addressing water scarcity. Microbial fuel cells (MFCs) have emerged as real-time biosensors for biochemical oxygen demand (BOD) in urban wastewater. Discrepancies in signal generation may arise due to changes in the composition and metabolism of mixed-culture electroactive biofilms stemming from different wastewater compositions. In this study, 3D-printed MFC-based biosensors were employed to assess the BOD of sterile complex artificial wastewater and untreated urban wastewater. Alterations in the microbial composition of the anode were evaluated using 16S rRNA sequencing and metagenomics analysis. Results show that MFC-based biosensors can be effectively recalibrated for diverse types of wastewater, maintaining consistent sensitivity (0.64 ± 0.10 mA L mg−1 m−2 with synthetic wastewater and 0.78 ± 0.13 mA L mg−1 m−2 with urban wastewater) and limit of detection (49 ± 8 mg L−1 for synthetic wastewater and 44 ± 7 mg L−1 for urban wastewater). Crucially, pre-sterilization, conductivity adjustments, and nitrogen purging of wastewater are not required before its introduction into the biosensor. However, the presence of native aerobic microorganisms in the wastewater might affect the current output. Metagenomics and taxonomic analyses revealed that the alterations in biofilm composition are predominantly in response to the varied chemical and microbiological compositions of different substrates. Despite variations in anodic biofilm composition, the MFC-based biosensor maintains a relative error comparable to the standard BOD test. This highlights the resilience and flexibility of the biosensor when directly used with a variety of wastewater types before full biofilm adjustment.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.