Polyoxometalate-HKUST-1 composite derived nanostructured Na-Cu-Mo2C catalyst for efficient reverse water gas shift reaction

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-06-29 DOI:10.1039/d4nr01185f
Gaje rawat, Satyajit Panda, Siddharth Sapan, Pranay Rajendra Chandewar, Jogender Singh, Ankush V. Biradar, Debaprashad Shee, Ankur Bordoloi
{"title":"Polyoxometalate-HKUST-1 composite derived nanostructured Na-Cu-Mo2C catalyst for efficient reverse water gas shift reaction","authors":"Gaje rawat, Satyajit Panda, Siddharth Sapan, Pranay Rajendra Chandewar, Jogender Singh, Ankush V. Biradar, Debaprashad Shee, Ankur Bordoloi","doi":"10.1039/d4nr01185f","DOIUrl":null,"url":null,"abstract":"Transforming CO2 to CO via reverse water-gas shift (RWGS) reaction is widely regarded as a promising technique for improving the efficiency and economics of the CO2 utilization processes. Moreover, it is also considered as a pathway towards e-fuels. Cu-oxide catalysts are widely explored for low-temperature RWGS, nevertheless, they tend to deactivate significantly in applied reaction conditions due to the agglomeration of copper particles at elevated temperatures. Herein, we have synthesized homogeneously distributed Cu metallic nanoparticles supported on Mo2C for RWGS reaction by a unique approach in-situ carburization of metal-organic frameworks (MOFs) comprised of Cu-based MOF i.e., HKUST-1 encapsulating molybdenum-based polyoxometalates. The newly derived Na-Cu-Mo2C nanocomposite catalyst system exhibits excellent catalytic performance with a CO production rate of 3230.0 mmol gcat-1 h-1 with 100 % CO selectivity. Even after 250 h of stability test, the catalyst remained active with more than 80 % of its initial activity.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr01185f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transforming CO2 to CO via reverse water-gas shift (RWGS) reaction is widely regarded as a promising technique for improving the efficiency and economics of the CO2 utilization processes. Moreover, it is also considered as a pathway towards e-fuels. Cu-oxide catalysts are widely explored for low-temperature RWGS, nevertheless, they tend to deactivate significantly in applied reaction conditions due to the agglomeration of copper particles at elevated temperatures. Herein, we have synthesized homogeneously distributed Cu metallic nanoparticles supported on Mo2C for RWGS reaction by a unique approach in-situ carburization of metal-organic frameworks (MOFs) comprised of Cu-based MOF i.e., HKUST-1 encapsulating molybdenum-based polyoxometalates. The newly derived Na-Cu-Mo2C nanocomposite catalyst system exhibits excellent catalytic performance with a CO production rate of 3230.0 mmol gcat-1 h-1 with 100 % CO selectivity. Even after 250 h of stability test, the catalyst remained active with more than 80 % of its initial activity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效反向水煤气变换反应的聚氧化铝-HKUST-1 复合衍生纳米结构 Na-Cu-Mo2C 催化剂
通过水-气反向转化(RWGS)反应将二氧化碳转化为一氧化碳,被广泛认为是提高二氧化碳利用过程的效率和经济性的一项前景广阔的技术。此外,它也被认为是实现电子燃料的途径之一。氧化铜催化剂在低温 RWGS 反应中被广泛使用,但由于铜颗粒在高温下团聚,它们在应用反应条件下往往会明显失活。在此,我们采用一种独特的方法,对由铜基 MOF(即 HKUST-1 封装钼基多氧金属酸盐)组成的金属有机框架(MOF)进行原位渗碳,合成了均匀分布在 Mo2C 上的铜金属纳米颗粒,用于 RWGS 反应。新得到的 Na-Cu-Mo2C 纳米复合催化剂体系具有优异的催化性能,一氧化碳生产率为 3230.0 mmol gcat-1 h-1,一氧化碳选择性为 100%。即使经过 250 小时的稳定性测试,催化剂的活性仍保持在初始活性的 80% 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
In situ SEM fatigue testing technology for metallic materials: a review. Quantum dots as a fluorescent labeling tool for live-cell imaging of Leptospira. A novel GO hoisted SnO2-BiOBr bifunctional catalyst for the remediation of organic dyes under illumination by visible light and electrocatalytic water splitting. Bayesian optimization of glycopolymer structures for the interaction with cholera toxin B subunit. Recent advances in synthesis and properties of silver nanoclusters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1