Catalytic Enantioselective Hydroxylation of Tertiary Propargylic C(sp3)–H Bonds in Acyclic Systems: a Kinetic Resolution Study

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-06-27 DOI:10.1021/jacs.4c03610
Min Cao, Hongliang Wang, Fangao Hou, Yuhang Zhu, Qianqian Liu, Chen-Ho Tung and Lei Liu*, 
{"title":"Catalytic Enantioselective Hydroxylation of Tertiary Propargylic C(sp3)–H Bonds in Acyclic Systems: a Kinetic Resolution Study","authors":"Min Cao,&nbsp;Hongliang Wang,&nbsp;Fangao Hou,&nbsp;Yuhang Zhu,&nbsp;Qianqian Liu,&nbsp;Chen-Ho Tung and Lei Liu*,&nbsp;","doi":"10.1021/jacs.4c03610","DOIUrl":null,"url":null,"abstract":"<p >Direct site-selective and enantioselective oxyfunctionalization of C(sp<sup>3</sup>)–H bonds to form alcohols with a general scope, with predictable selectivities, and in preparatively useful yields represents a paradigm shift in the standard logic of synthetic organic chemistry. However, the knowledge of either enzymatic or nonenzymatic asymmetric hydroxylation of tertiary C–H bonds for enantioenriched tertiary alcohol synthesis is sorely lacking. Here, we report a practical manganese-catalyzed enantio-differentiating hydroxylation of tertiary propargylic C–H bonds in acyclic systems, producing a wide range of structurally diverse enantioenriched tertiary propargyl alcohols in high efficiency with extremely efficient chemo- and enantio-discrimination. Other features include the use of C–H substrates as the limiting reagent, noteworthy functional group compatibility, great synthetic utilities, and scalability. The findings serve as a blueprint for the development of metal-catalyzed asymmetric oxidation of challenging substrates.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c03610","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Direct site-selective and enantioselective oxyfunctionalization of C(sp3)–H bonds to form alcohols with a general scope, with predictable selectivities, and in preparatively useful yields represents a paradigm shift in the standard logic of synthetic organic chemistry. However, the knowledge of either enzymatic or nonenzymatic asymmetric hydroxylation of tertiary C–H bonds for enantioenriched tertiary alcohol synthesis is sorely lacking. Here, we report a practical manganese-catalyzed enantio-differentiating hydroxylation of tertiary propargylic C–H bonds in acyclic systems, producing a wide range of structurally diverse enantioenriched tertiary propargyl alcohols in high efficiency with extremely efficient chemo- and enantio-discrimination. Other features include the use of C–H substrates as the limiting reagent, noteworthy functional group compatibility, great synthetic utilities, and scalability. The findings serve as a blueprint for the development of metal-catalyzed asymmetric oxidation of challenging substrates.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无环体系中三级丙炔基 C(sp3)-H 键的催化对映体选择性羟基化:动力学解析研究
对 C(sp3)-H 键进行直接的位点选择性和对映体选择性氧官能化,以形成具有一般范围、可预测选择性和制备有用产率的醇,代表了合成有机化学标准逻辑的范式转变。然而,人们对酶法或非酶法不对称羟化三级 C-H 键合成对映体丰富的三级醇的了解还非常缺乏。在此,我们报告了一种实用的锰催化无环体系中三级丙炔 C-H 键的对映体区分羟基化反应,该反应可高效生产出多种结构不同的对映体丰富的三级丙炔醇,并具有极高的化学和对映体区分效率。其他特点还包括使用 C-H 底物作为限制试剂、值得注意的官能团兼容性、强大的合成功能和可扩展性。这些发现为开发金属催化的高难度底物不对称氧化技术提供了蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Beyond the First Coordination Sphere─Manipulating the Excited-State Landscape in Iron(II) Chromophores with Protons. Detection of a Kinetically Competent Compound-I Intermediate in the Vancomycin Biosynthetic Enzyme OxyB. Direct Probe of Conical Intersection Photochemistry by Time-Resolved X-ray Magnetic Circular Dichroism. Efficient Capture and Release of the Rare-Earth Element Neodymium in Aqueous Solution by Recyclable Covalent Organic Frameworks. Mechanistic Insight into the Thermal "Blueing" of Cyanine Dyes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1