Rich Sulfur Vacancies and Reduced Schottky Barrier Height Synergistically Enable Au/ZnIn2S4 with Enhanced Photocatalytic CO2 Reduction into CO

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Pub Date : 2024-06-30 DOI:10.1021/acs.inorgchem.4c02376
Jie Lin, Jiale He, Qingling Huang, Yu Zhang, Wei Li, Jianqiang Hu*, Guobing Zhou* and Zhen Yang*, 
{"title":"Rich Sulfur Vacancies and Reduced Schottky Barrier Height Synergistically Enable Au/ZnIn2S4 with Enhanced Photocatalytic CO2 Reduction into CO","authors":"Jie Lin,&nbsp;Jiale He,&nbsp;Qingling Huang,&nbsp;Yu Zhang,&nbsp;Wei Li,&nbsp;Jianqiang Hu*,&nbsp;Guobing Zhou* and Zhen Yang*,&nbsp;","doi":"10.1021/acs.inorgchem.4c02376","DOIUrl":null,"url":null,"abstract":"<p >Constructing the plasmonic metal/semiconductor heterostructure with a suitable Schottky barrier height (SBH) and the sufficiently reliable active sites is of importance to achieve highly efficient and selective photocatalytic CO<sub>2</sub> reduction into hydrocarbon fuels. Herein, we report Au/sulfur vacancy-rich ZnIn<sub>2</sub>S<sub>4</sub> (Au/V<sub>S</sub>R-ZIS) hierarchical photocatalysts, fabricated via in situ photodepositing Au nanoparticles (NPs) onto the nanosheet self-assembled ZnIn<sub>2</sub>S<sub>4</sub> (ZIS) micrometer flowers (MFs) with rich sulfur vacancies (V<sub>S</sub>). Density functional theory (DFT) calculations confirm that for the Au/V<sub>S</sub>R-ZIS system, the Au NPs serve as the reaction sites for H<sub>2</sub>O oxidation, and the V<sub>S</sub>R-ZIS MFs serve as those for CO<sub>2</sub> reduction. The rich V<sub>S</sub> in the Au/V<sub>S</sub>R-ZIS hybrid can reduce its SBH so as to boost more hot electrons in the Au NPs across its Schottky barrier and then inject into the conduction band (CB) of the V<sub>S</sub>R-ZIS MFs. In addition, V<sub>S</sub> can also act as the electron sink to trap the photogenerated electrons, retarding the recombination of photogenerated carriers. The two merits effectively enhance the photogenerated electron density in the surface of V<sub>S</sub>R-ZIS MFs, availing CO<sub>2</sub> photoreduction. In addition, the introduction of rich V<sub>S</sub> in the Au/V<sub>S</sub>R-ZIS hybrid can offer more active sites, benefiting the CO<sub>2</sub> adsorption and accelerating the desorption of CO* from the surface of the photocatalyst. Therefore, under visible light illumination with no sacrificial reagent, the optimum photocatalyst (Au/V<sub>S</sub>R-ZIS-0.4) presents the enhanced and selective CO<sub>2</sub> photoreduction into CO (8.15 μmol g<sup>–1</sup>h<sup>–1</sup> and near 100%), which are superior to those of most of ZIS-based and plasmon-based photocatalysts. The photocatalytic activity is about 40.0-fold as high as that of the Vs-poor-ZIS (V<sub>S</sub>P-ZIS) MFs. This work contributes a viable strategy for designing highly efficient plasmonic photocatalysts by using the synergism of the anion vacancies and the optimized SBH induced by them.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c02376","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing the plasmonic metal/semiconductor heterostructure with a suitable Schottky barrier height (SBH) and the sufficiently reliable active sites is of importance to achieve highly efficient and selective photocatalytic CO2 reduction into hydrocarbon fuels. Herein, we report Au/sulfur vacancy-rich ZnIn2S4 (Au/VSR-ZIS) hierarchical photocatalysts, fabricated via in situ photodepositing Au nanoparticles (NPs) onto the nanosheet self-assembled ZnIn2S4 (ZIS) micrometer flowers (MFs) with rich sulfur vacancies (VS). Density functional theory (DFT) calculations confirm that for the Au/VSR-ZIS system, the Au NPs serve as the reaction sites for H2O oxidation, and the VSR-ZIS MFs serve as those for CO2 reduction. The rich VS in the Au/VSR-ZIS hybrid can reduce its SBH so as to boost more hot electrons in the Au NPs across its Schottky barrier and then inject into the conduction band (CB) of the VSR-ZIS MFs. In addition, VS can also act as the electron sink to trap the photogenerated electrons, retarding the recombination of photogenerated carriers. The two merits effectively enhance the photogenerated electron density in the surface of VSR-ZIS MFs, availing CO2 photoreduction. In addition, the introduction of rich VS in the Au/VSR-ZIS hybrid can offer more active sites, benefiting the CO2 adsorption and accelerating the desorption of CO* from the surface of the photocatalyst. Therefore, under visible light illumination with no sacrificial reagent, the optimum photocatalyst (Au/VSR-ZIS-0.4) presents the enhanced and selective CO2 photoreduction into CO (8.15 μmol g–1h–1 and near 100%), which are superior to those of most of ZIS-based and plasmon-based photocatalysts. The photocatalytic activity is about 40.0-fold as high as that of the Vs-poor-ZIS (VSP-ZIS) MFs. This work contributes a viable strategy for designing highly efficient plasmonic photocatalysts by using the synergism of the anion vacancies and the optimized SBH induced by them.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丰富的硫空位和降低的肖特基势垒高度协同增强了金/锌In2S4 的光催化能力,可将二氧化碳还原成一氧化碳。
构建具有合适肖特基势垒高度(SBH)和足够可靠活性位点的等离子体金属/半导体异质结构,对于实现将二氧化碳高效、选择性地光催化还原为碳氢化合物燃料具有重要意义。在此,我们报告了金/硫空位富集的 ZnIn2S4(Au/VSR-ZIS)分层光催化剂,该催化剂是通过原位光沉积金纳米颗粒(NPs)到具有富硫基空位(VS)的纳米片自组装 ZnIn2S4(ZIS)微米花(MFs)上而制成的。密度泛函理论(DFT)计算证实,在 Au/VSR-ZIS 系统中,Au NPs 是 H2O 氧化的反应位点,而 VSR-ZIS MFs 则是 CO2 还原的反应位点。Au/VSR-ZIS 混合体系中富含的 VS 可以降低其 SBH,从而推动 Au NPs 中更多的热电子穿过其肖特基势垒,然后注入 VSR-ZIS MF 的导带 (CB)。此外,VS 还可以充当电子汇,捕获光生电子,阻止光生载流子的重组。这两个优点有效地提高了 VSR-ZIS 中频表面的光生电子密度,从而实现了二氧化碳的光致还原。此外,Au/VSR-ZIS 杂化物中富含的 VS 可以提供更多的活性位点,有利于 CO2 的吸附,并加速光催化剂表面 CO* 的解吸。因此,在无牺牲试剂的可见光照射下,最佳光催化剂(Au/VSR-ZIS-0.4)能增强并选择性地将 CO2 光还原成 CO(8.15 μmol g-1h-1,接近 100%),优于大多数基于 ZIS 和等离子体的光催化剂。光催化活性是贫Vs-ZIS(VSP-ZIS)中频催化剂的 40.0 倍。这项工作为利用阴离子空位的协同作用及其诱导的优化 SBH 设计高效等离子光催化剂提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
期刊最新文献
A Zeolite-Templated Carbon Synthesized from Extralarge-Pore Zeolite ZEO-1. Cause, Consequence, and Control of Ag Vacancies in BaAg2-xAs2. Luminescent Bis(amidinate) Indium Complexes Alkylaluminum Complexes Featuring Bridged Bis-Formylfluorenimide Ligands for Hydroboration of Aldehyde, Ketone, and Imines. Bombesin-Targeted Delivery of β-Carboline-Based Ir(III) and Ru(II) Photosensitizers for a Selective Photodynamic Therapy of Prostate Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1