Beyond Shell-Filling: Strong Enhancement of Electron Affinity of Metal Clusters through a Noninvasive Oriented External Electric Field

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-07-01 DOI:10.1021/acs.jpclett.4c01065
Li-Ye Liu, Jun Li, Si-Qi Liu, Shi-Hu Du, Muhammad Bilal Ahmed Siddique, Lei Zhang, Yuxiang Bu and Shi-Bo Cheng*, 
{"title":"Beyond Shell-Filling: Strong Enhancement of Electron Affinity of Metal Clusters through a Noninvasive Oriented External Electric Field","authors":"Li-Ye Liu,&nbsp;Jun Li,&nbsp;Si-Qi Liu,&nbsp;Shi-Hu Du,&nbsp;Muhammad Bilal Ahmed Siddique,&nbsp;Lei Zhang,&nbsp;Yuxiang Bu and Shi-Bo Cheng*,&nbsp;","doi":"10.1021/acs.jpclett.4c01065","DOIUrl":null,"url":null,"abstract":"<p >Traditional electron counting rules, like the Jellium model, have long been successfully utilized in designing superhalogens by modifying clusters to have one electron less than a filled electronic shell. However, this shell-filling approach, which involves altering the intrinsic properties of the clusters, can be complex and challenging to control, especially in experiments. In this letter, we theoretically establish that the oriented external electric field (OEEF) can substantially enhance the electron affinity (EA) of diverse aluminum-based metal clusters with varying valence electron configurations, leading to the creation of superhalogen species without altering their shell arrangements. This OEEF approach offers a noninvasive alternative to traditional superatom design strategies, as it does not disrupt the clusters’ geometrical structures and superatomic states. These findings contribute a vital piece to the puzzle of constructing superalkalis and superhalogens, extending beyond conventional shell-filling strategies and potentially expanding the range of applications for functional clusters.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c01065","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional electron counting rules, like the Jellium model, have long been successfully utilized in designing superhalogens by modifying clusters to have one electron less than a filled electronic shell. However, this shell-filling approach, which involves altering the intrinsic properties of the clusters, can be complex and challenging to control, especially in experiments. In this letter, we theoretically establish that the oriented external electric field (OEEF) can substantially enhance the electron affinity (EA) of diverse aluminum-based metal clusters with varying valence electron configurations, leading to the creation of superhalogen species without altering their shell arrangements. This OEEF approach offers a noninvasive alternative to traditional superatom design strategies, as it does not disrupt the clusters’ geometrical structures and superatomic states. These findings contribute a vital piece to the puzzle of constructing superalkalis and superhalogens, extending beyond conventional shell-filling strategies and potentially expanding the range of applications for functional clusters.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越填壳:通过无创定向外电场强力增强金属团簇的电子亲和力
传统的电子计数规则,如 Jellium 模型,长期以来一直被成功地用于设计超级卤素,其方法是通过修改电子团簇,使其比填充电子壳少一个电子。然而,这种填壳方法涉及改变原子团簇的固有性质,可能会很复杂,控制起来也很困难,尤其是在实验中。在这封信中,我们从理论上证实了定向外电场(OEEF)可以大幅提高具有不同价电子构型的铝基金属团簇的电子亲和力(EA),从而在不改变其外壳排列的情况下产生超卤素物种。这种 OEEF 方法不破坏簇的几何结构和超原子态,是传统超原子设计策略的一种非侵入性替代方法。这些发现为构建超碱基和超卤素的难题提供了重要的一环,超越了传统的壳填充策略,并有可能扩大功能团簇的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Calculation of π Using a Molecular Electron Spin Qubit Implemented by Pulsed Electron Paramagnetic Resonance. Corrosion and Enhanced Hydrogen Evolution in Electrochemical Reduction of Ammonium Carbamate on Transition Metal Surfaces. Structural Insight into a Sixteen Cyanine Dye Construct via Exciton-Exciton Annihilation. Tailoring the Molecular Structure of 6-Gingerol for Targeting the Phase Separation in Human Lysozyme. Coupled Kite-to-Square Distortion Transition and Physical Properties in 2D Lead Halide Perovskite.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1