Even–Odd Layer-Dependent Exchange Bias Effect in MnBi2Te4 Chern Insulator Devices

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-06-27 DOI:10.1021/acs.nanolett.4c01597
Bo Chen, Xiaoda Liu, Yuhang Li, Han Tay, Takashi Taniguchi, Kenji Watanabe, Moses H. W. Chan, Jiaqiang Yan, Fengqi Song, Ran Cheng* and Cui-Zu Chang*, 
{"title":"Even–Odd Layer-Dependent Exchange Bias Effect in MnBi2Te4 Chern Insulator Devices","authors":"Bo Chen,&nbsp;Xiaoda Liu,&nbsp;Yuhang Li,&nbsp;Han Tay,&nbsp;Takashi Taniguchi,&nbsp;Kenji Watanabe,&nbsp;Moses H. W. Chan,&nbsp;Jiaqiang Yan,&nbsp;Fengqi Song,&nbsp;Ran Cheng* and Cui-Zu Chang*,&nbsp;","doi":"10.1021/acs.nanolett.4c01597","DOIUrl":null,"url":null,"abstract":"<p >Magnetic topological materials with coexisting magnetism and nontrivial band structures exhibit many novel quantum phenomena, including the quantum anomalous Hall effect, the axion insulator state, and the Weyl semimetal phase. As a stoichiometric layered antiferromagnetic topological insulator, thin films of MnBi<sub>2</sub>Te<sub>4</sub> show fascinating even–odd layer-dependent physics. In this work, we fabricate a series of thin-flake MnBi<sub>2</sub>Te<sub>4</sub> devices using stencil masks and observe the Chern insulator state at high magnetic fields. Upon magnetic field training, a large exchange bias effect is observed in odd but not in even septuple layer (SL) devices. Through theoretical calculations, we attribute the even–odd layer-dependent exchange bias effect to the contrasting surface and bulk magnetic properties of MnBi<sub>2</sub>Te<sub>4</sub> devices. Our findings reveal the microscopic magnetic configuration of MnBi<sub>2</sub>Te<sub>4</sub> thin flakes and highlight the challenges in replicating the zero magnetic field quantum anomalous Hall effect in odd SL MnBi<sub>2</sub>Te<sub>4</sub> devices.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01597","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic topological materials with coexisting magnetism and nontrivial band structures exhibit many novel quantum phenomena, including the quantum anomalous Hall effect, the axion insulator state, and the Weyl semimetal phase. As a stoichiometric layered antiferromagnetic topological insulator, thin films of MnBi2Te4 show fascinating even–odd layer-dependent physics. In this work, we fabricate a series of thin-flake MnBi2Te4 devices using stencil masks and observe the Chern insulator state at high magnetic fields. Upon magnetic field training, a large exchange bias effect is observed in odd but not in even septuple layer (SL) devices. Through theoretical calculations, we attribute the even–odd layer-dependent exchange bias effect to the contrasting surface and bulk magnetic properties of MnBi2Te4 devices. Our findings reveal the microscopic magnetic configuration of MnBi2Te4 thin flakes and highlight the challenges in replicating the zero magnetic field quantum anomalous Hall effect in odd SL MnBi2Te4 devices.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MnBi2Te4 Chern Insulator 器件中偶数层依赖的交换偏置效应。
磁性拓扑材料同时具有磁性和非奇异的带状结构,表现出许多新奇的量子现象,包括量子反常霍尔效应、轴绝缘体状态和韦尔半金属相。作为一种化学计量层状反铁磁拓扑绝缘体,MnBi2Te4 薄膜显示出引人入胜的偶数层依赖物理学。在这项工作中,我们利用模板掩模制造了一系列薄片锰铋碲器件,并观察了高磁场下的切尔绝缘体状态。在磁场训练时,奇数层(SL)器件会出现较大的交换偏压效应,而偶数层(SL)器件则不会。通过理论计算,我们将依赖于偶数层的交换偏置效应归因于 MnBi2Te4 器件不同的表面和体磁性能。我们的研究结果揭示了 MnBi2Te4 薄片的微观磁性构造,并强调了在奇数 SL MnBi2Te4 器件中复制零磁场量子反常霍尔效应所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Graphene Bilayer as a Template for Manufacturing Novel Encapsulated 2D Materials. Octahedral vs Tiara-like Pd6(SR)12 Clusters. Scalable Multistep Imprinting of Multiplexed Optical Anti-counterfeiting Patterns with Hierarchical Structures. Transcutaneous Immunization of 1D Rod-Like Tobacco-Mosaic-Virus-Based Peptide Vaccine via Tip-Loaded Dissolving Microneedles. Vanadate-Mediated Mismatch Configuration over the Reconstructed Nickel-Iron Electrocatalyst for Boosting Alkaline Oxygen Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1