Bradley B Stocks, Marie-Pier Thibeault, Denis L'Abbé, Muhammad Umer, Yali Liu, Matthew Stuible, Yves Durocher, Jeremy E Melanson
{"title":"Characterization of biotinylated human ACE2 and SARS-CoV-2 Omicron BA.4/5 spike protein reference materials.","authors":"Bradley B Stocks, Marie-Pier Thibeault, Denis L'Abbé, Muhammad Umer, Yali Liu, Matthew Stuible, Yves Durocher, Jeremy E Melanson","doi":"10.1007/s00216-024-05413-7","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate diagnostic and serology assays are required for the continued management of the COVID-19 pandemic yet spike protein mutations and intellectual property concerns with antigens and antibodies used in various test kits render comparability assessments difficult. As the use of common, well-characterized reagents can help address this lack of standardization, the National Research Council Canada has produced two protein reference materials (RMs) for use in SARS-CoV-2 serology assays: biotinylated human angiotensin-converting enzyme 2 RM, ACE2-1, and SARS-CoV-2 Omicron BA.4/5 spike protein RM, OMIC-1. Reference values were assigned through a combination of amino acid analysis via isotope dilution liquid chromatography tandem mass spectrometry following acid hydrolysis, and ultraviolet-visible (UV-Vis) spectrophotometry at 280 nm. Vial-to-vial homogeneity was established using UV-Vis measurements, and protein oligomeric status, monitored by size exclusion liquid chromatography (LC-SEC), was used to evaluate transportation, storage, and freeze-thaw stabilities. The molar protein concentration in ACE2-1 was 25.3 ± 1.7 µmol L<sup>-1</sup> (k = 2, 95% CI) and consisted almost exclusively (98%) of monomeric ACE2, while OMIC-1 contained 5.4 ± 0.5 µmol L<sup>-1</sup> (k = 2) spike protein in a mostly (82%) trimeric form. Glycoprotein molar mass determination by LC-SEC with multi-angle light scattering detection facilitated calculation of corresponding mass concentrations. To confirm protein functionality, the binding of OMIC-1 to immobilized ACE2-1 was investigated with surface plasmon resonance and the resulting dissociation constant, K<sub>D</sub> ~ 4.4 nM, was consistent with literature values.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330416/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05413-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate diagnostic and serology assays are required for the continued management of the COVID-19 pandemic yet spike protein mutations and intellectual property concerns with antigens and antibodies used in various test kits render comparability assessments difficult. As the use of common, well-characterized reagents can help address this lack of standardization, the National Research Council Canada has produced two protein reference materials (RMs) for use in SARS-CoV-2 serology assays: biotinylated human angiotensin-converting enzyme 2 RM, ACE2-1, and SARS-CoV-2 Omicron BA.4/5 spike protein RM, OMIC-1. Reference values were assigned through a combination of amino acid analysis via isotope dilution liquid chromatography tandem mass spectrometry following acid hydrolysis, and ultraviolet-visible (UV-Vis) spectrophotometry at 280 nm. Vial-to-vial homogeneity was established using UV-Vis measurements, and protein oligomeric status, monitored by size exclusion liquid chromatography (LC-SEC), was used to evaluate transportation, storage, and freeze-thaw stabilities. The molar protein concentration in ACE2-1 was 25.3 ± 1.7 µmol L-1 (k = 2, 95% CI) and consisted almost exclusively (98%) of monomeric ACE2, while OMIC-1 contained 5.4 ± 0.5 µmol L-1 (k = 2) spike protein in a mostly (82%) trimeric form. Glycoprotein molar mass determination by LC-SEC with multi-angle light scattering detection facilitated calculation of corresponding mass concentrations. To confirm protein functionality, the binding of OMIC-1 to immobilized ACE2-1 was investigated with surface plasmon resonance and the resulting dissociation constant, KD ~ 4.4 nM, was consistent with literature values.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.