Antimicrobial Resistance and New Antimicrobial Agents, A Review of the Literature.

IF 3.5 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current medicinal chemistry Pub Date : 2024-06-27 DOI:10.2174/0109298673306699240614112615
Zhaoyu Huang, Zhiyong Zhai, Ping Zhou, Wanjun Li, Wei Hu, Wei Gong
{"title":"Antimicrobial Resistance and New Antimicrobial Agents, A Review of the Literature.","authors":"Zhaoyu Huang, Zhiyong Zhai, Ping Zhou, Wanjun Li, Wei Hu, Wei Gong","doi":"10.2174/0109298673306699240614112615","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance has progressively diminished the effectiveness of conventional antibiotics, necessitating the cessation of clinical treatment. Consequently, novel antibacterial agents are urgently needed. We review studies on antimicrobial agents published during 2002-2023. Most of these studies were published within the last 10 years. By analyzing recent articles on antibiotic resistance and the development of new antibacterial drugs, we showed that although drug resistance is inevitable, the issue is being addressed gradually via the discovery and clinical application of antimicrobial peptides, nanomaterial drugs, and bacteriophage therapy. In light of the emergence of antimicrobial resistance, the development of new antimicrobial agents will require innovation in a field that has relied on traditional methods of discovery and development.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673306699240614112615","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotic resistance has progressively diminished the effectiveness of conventional antibiotics, necessitating the cessation of clinical treatment. Consequently, novel antibacterial agents are urgently needed. We review studies on antimicrobial agents published during 2002-2023. Most of these studies were published within the last 10 years. By analyzing recent articles on antibiotic resistance and the development of new antibacterial drugs, we showed that although drug resistance is inevitable, the issue is being addressed gradually via the discovery and clinical application of antimicrobial peptides, nanomaterial drugs, and bacteriophage therapy. In light of the emergence of antimicrobial resistance, the development of new antimicrobial agents will require innovation in a field that has relied on traditional methods of discovery and development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗菌剂耐药性和新型抗菌剂,文献综述。
抗生素耐药性逐渐削弱了传统抗生素的疗效,导致临床治疗不得不停止。因此,迫切需要新型抗菌药物。我们回顾了 2002-2023 年间发表的有关抗菌药物的研究。这些研究大多发表于最近 10 年内。通过分析近期有关抗生素耐药性和新型抗菌药物开发的文章,我们发现虽然耐药性不可避免,但通过抗菌肽、纳米材料药物和噬菌体疗法的发现和临床应用,这一问题正在逐步得到解决。鉴于抗菌药耐药性的出现,新抗菌药的开发需要在依赖传统发现和开发方法的领域进行创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current medicinal chemistry
Current medicinal chemistry 医学-生化与分子生物学
CiteScore
8.60
自引率
2.40%
发文量
468
审稿时长
3 months
期刊介绍: Aims & Scope Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
Elucidating the Significance of Zonulin in the Pathogenesis of Chronic Inflammatory Disorders: Emphasis on Intestinal Barrier Function and Tight Junction Regulation To Elucidate the Effective Role of Small Molecule Regulated lncRNAs in the Tumour Microenvironment in Immunotherapy ANGPTL4-the Link Binding Lipid Metabolism and Inflammation Role and Therapeutic Potential of P2X7 Receptor in Lung Cancer Progression Bioinformatics Analysis Screening and Identification of Key Biomarkers and Drug Targets in Human Glioblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1