Identification of novel benzothiazole-thiadiazole-based thiazolidinone derivative: in vitro and in silico approaches to develop promising anti-Alzheimer's agents.
Shoaib Khan, Rafaqat Hussain, Tayyiaba Iqbal, Yousaf Khan, Urooj Jamal, Hany W Darwish, Muhammad Adnan
{"title":"Identification of novel benzothiazole-thiadiazole-based thiazolidinone derivative: <i>in vitro</i> and <i>in silico</i> approaches to develop promising anti-Alzheimer's agents.","authors":"Shoaib Khan, Rafaqat Hussain, Tayyiaba Iqbal, Yousaf Khan, Urooj Jamal, Hany W Darwish, Muhammad Adnan","doi":"10.1080/17568919.2024.2366159","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> The present study describes benzothiazole derived thiazolidinone based thiadiazole derivatives (<b>1-16</b>) as anti-Alzheimer agents.<b>Materials & methods:</b> Synthesis of benzothiazole derived thiazolidinone based thiadiazole derivatives was achieved using the benzothiazole bearing 2-amine moiety. These synthesized compounds were confirmed via spectroscopic techniques (<sup>1</sup>H NMR, <sup>13</sup>C NMR and HREI-MS). These compounds were biologically evaluated for their anti-Alzheimer potential. Binding interactions with proteins and drug likeness of the analogs were explored through molecular docking and ADMET analysis, respectively. In the novel series, compound-<b>3</b> emerged as the most potent inhibitor when compared with other derivatives of the series.<b>Conclusion:</b> The present study provides potent anti-Alzheimer's agents that can be further optimized to discover novel anti-Alzheimer's drugs.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"1601-1613"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2366159","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: The present study describes benzothiazole derived thiazolidinone based thiadiazole derivatives (1-16) as anti-Alzheimer agents.Materials & methods: Synthesis of benzothiazole derived thiazolidinone based thiadiazole derivatives was achieved using the benzothiazole bearing 2-amine moiety. These synthesized compounds were confirmed via spectroscopic techniques (1H NMR, 13C NMR and HREI-MS). These compounds were biologically evaluated for their anti-Alzheimer potential. Binding interactions with proteins and drug likeness of the analogs were explored through molecular docking and ADMET analysis, respectively. In the novel series, compound-3 emerged as the most potent inhibitor when compared with other derivatives of the series.Conclusion: The present study provides potent anti-Alzheimer's agents that can be further optimized to discover novel anti-Alzheimer's drugs.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.