Yanqi Zhong, Heng Zhang, Peng Wang, Jing Zhao, Yuxi Ge, Zongqiong Sun, Zi Wang, Jie Li, Shudong Hu
{"title":"Auger emitter in combination with Olaparib suppresses tumor growth via promoting antitumor immune responses in pancreatic cancer.","authors":"Yanqi Zhong, Heng Zhang, Peng Wang, Jing Zhao, Yuxi Ge, Zongqiong Sun, Zi Wang, Jie Li, Shudong Hu","doi":"10.1007/s10637-024-01454-y","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aimed to clarify the hypothesis that auger emitter <sup>125</sup>I particles in combination with PARP inhibitor Olaparib could inhibit pancreatic cancer progression by promoting antitumor immune response. Pancreatic cancer cell line (Panc02) and mice subcutaneously inoculated with Panc02 cells were employed for the in vitro and in vivo experiments, respectively, followed by <sup>125</sup>I and Olaparib administrations. The apoptosis and CRT exposure of Panc02 cells were detected using flow cytometry assay. QRT-PCR, immunofluorescence, immunohistochemical analysis, and western blot were employed to examine mRNA and protein expression. Experimental results showed that <sup>125</sup>I combined with Olaparib induced immunogenic cell death and affected antigen presentation in pancreatic cancer. <sup>125</sup>I in combination with Olaparib influenced T cells and dendritic cells by up-regulating CD4, CD8, CD69, Caspase3, CD86, granzyme B, CD80, and type I interferon (IFN)-γ and down-regulating Ki67 in vivo. The combination also activated the cyclic GMP-AMP synthase stimulator of IFN genes (Sting) pathway in Panc02 cells. Moreover, Sting knockdown alleviated the effect of the combination of <sup>125</sup>I and Olaparib on pancreatic cancer progression. In summary, <sup>125</sup>I in combination with Olaparib inhibited pancreatic cancer progression through promoting antitumor immune responses, which may provide a potential treatment for pancreatic cancer.</p>","PeriodicalId":14513,"journal":{"name":"Investigational New Drugs","volume":" ","pages":"442-453"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigational New Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10637-024-01454-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aimed to clarify the hypothesis that auger emitter 125I particles in combination with PARP inhibitor Olaparib could inhibit pancreatic cancer progression by promoting antitumor immune response. Pancreatic cancer cell line (Panc02) and mice subcutaneously inoculated with Panc02 cells were employed for the in vitro and in vivo experiments, respectively, followed by 125I and Olaparib administrations. The apoptosis and CRT exposure of Panc02 cells were detected using flow cytometry assay. QRT-PCR, immunofluorescence, immunohistochemical analysis, and western blot were employed to examine mRNA and protein expression. Experimental results showed that 125I combined with Olaparib induced immunogenic cell death and affected antigen presentation in pancreatic cancer. 125I in combination with Olaparib influenced T cells and dendritic cells by up-regulating CD4, CD8, CD69, Caspase3, CD86, granzyme B, CD80, and type I interferon (IFN)-γ and down-regulating Ki67 in vivo. The combination also activated the cyclic GMP-AMP synthase stimulator of IFN genes (Sting) pathway in Panc02 cells. Moreover, Sting knockdown alleviated the effect of the combination of 125I and Olaparib on pancreatic cancer progression. In summary, 125I in combination with Olaparib inhibited pancreatic cancer progression through promoting antitumor immune responses, which may provide a potential treatment for pancreatic cancer.
期刊介绍:
The development of new anticancer agents is one of the most rapidly changing aspects of cancer research. Investigational New Drugs provides a forum for the rapid dissemination of information on new anticancer agents. The papers published are of interest to the medical chemist, toxicologist, pharmacist, pharmacologist, biostatistician and clinical oncologist. Investigational New Drugs provides the fastest possible publication of new discoveries and results for the whole community of scientists developing anticancer agents.