Brooks I Mitchell, Isabelle E Yazel Eiser, Kalpana J Kallianpur, Louie Mar Gangcuangco, Dominic C Chow, Lishomwa C Ndhlovu, Robert Paul, Cecilia M Shikuma
{"title":"Dynamics of peripheral T cell exhaustion and monocyte subpopulations in neurocognitive impairment and brain atrophy in chronic HIV infection.","authors":"Brooks I Mitchell, Isabelle E Yazel Eiser, Kalpana J Kallianpur, Louie Mar Gangcuangco, Dominic C Chow, Lishomwa C Ndhlovu, Robert Paul, Cecilia M Shikuma","doi":"10.1007/s13365-024-01223-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>HIV-associated neurocognitive disorders (HAND) is hypothesized to be a result of myeloid cell-induced neuro-inflammation in the central nervous system that may be initiated in the periphery, but the contribution of peripheral T cells in HAND pathogenesis remains poorly understood.</p><p><strong>Methods: </strong>We assessed markers of T cell activation (HLA-DR + CD38+), immunosenescence (CD57 + CD28-), and immune-exhaustion (TIM-3, PD-1 and TIGIT) as well as monocyte subsets (classical, intermediate, and non-classical) by flow cytometry in peripheral blood derived from individuals with HIV on long-term stable anti-retroviral therapy (ART). Additionally, normalized neuropsychological (NP) composite test z-scores were obtained and regional brain volumes were assessed by magnetic resonance imaging (MRI). Relationships between proportions of immune phenotypes (of T-cells and monocytes), NP z-scores, and brain volumes were analyzed using Pearson correlations and multiple linear regression models.</p><p><strong>Results: </strong>Of N = 51 participants, 84.3% were male, 86.3% had undetectable HIV RNA < 50 copies/ml, median age was 52 [47, 57] years and median CD4 T cell count was 479 [376, 717] cells/uL. Higher CD4 T cells expressing PD-1 + and/or TIM-3 + were associated with lower executive function and working memory and higher CD8 T cells expressing PD-1<sup>+</sup> and/or TIM-3<sup>+</sup> were associated with reduced brain volumes in multiple regions (putamen, nucleus accumbens, cerebellar cortex, and subcortical gray matter). Furthermore, higher single or dual frequencies of PD-1 + and TIM-3 + expressing CD4 and CD8 T-cells correlated with higher CD16 + monocyte numbers.</p><p><strong>Conclusions: </strong>This study reinforces evidence that T cells, particularly those with immune exhaustion phenotypes, are associated with neurocognitive impairment and brain atrophy in people living with HIV on ART. Relationships revealed between T-cell immune exhaustion and inflammatory in CD16<sup>+</sup> monocytes uncover interrelated cellular processes likely involved in the immunopathogenesis of HAND.</p>","PeriodicalId":16665,"journal":{"name":"Journal of NeuroVirology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroVirology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13365-024-01223-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: HIV-associated neurocognitive disorders (HAND) is hypothesized to be a result of myeloid cell-induced neuro-inflammation in the central nervous system that may be initiated in the periphery, but the contribution of peripheral T cells in HAND pathogenesis remains poorly understood.
Methods: We assessed markers of T cell activation (HLA-DR + CD38+), immunosenescence (CD57 + CD28-), and immune-exhaustion (TIM-3, PD-1 and TIGIT) as well as monocyte subsets (classical, intermediate, and non-classical) by flow cytometry in peripheral blood derived from individuals with HIV on long-term stable anti-retroviral therapy (ART). Additionally, normalized neuropsychological (NP) composite test z-scores were obtained and regional brain volumes were assessed by magnetic resonance imaging (MRI). Relationships between proportions of immune phenotypes (of T-cells and monocytes), NP z-scores, and brain volumes were analyzed using Pearson correlations and multiple linear regression models.
Results: Of N = 51 participants, 84.3% were male, 86.3% had undetectable HIV RNA < 50 copies/ml, median age was 52 [47, 57] years and median CD4 T cell count was 479 [376, 717] cells/uL. Higher CD4 T cells expressing PD-1 + and/or TIM-3 + were associated with lower executive function and working memory and higher CD8 T cells expressing PD-1+ and/or TIM-3+ were associated with reduced brain volumes in multiple regions (putamen, nucleus accumbens, cerebellar cortex, and subcortical gray matter). Furthermore, higher single or dual frequencies of PD-1 + and TIM-3 + expressing CD4 and CD8 T-cells correlated with higher CD16 + monocyte numbers.
Conclusions: This study reinforces evidence that T cells, particularly those with immune exhaustion phenotypes, are associated with neurocognitive impairment and brain atrophy in people living with HIV on ART. Relationships revealed between T-cell immune exhaustion and inflammatory in CD16+ monocytes uncover interrelated cellular processes likely involved in the immunopathogenesis of HAND.
期刊介绍:
The Journal of NeuroVirology (JNV) provides a unique platform for the publication of high-quality basic science and clinical studies on the molecular biology and pathogenesis of viral infections of the nervous system, and for reporting on the development of novel therapeutic strategies using neurotropic viral vectors. The Journal also emphasizes publication of non-viral infections that affect the central nervous system. The Journal publishes original research articles, reviews, case reports, coverage of various scientific meetings, along with supplements and special issues on selected subjects.
The Journal is currently accepting submissions of original work from the following basic and clinical research areas: Aging & Neurodegeneration, Apoptosis, CNS Signal Transduction, Emerging CNS Infections, Molecular Virology, Neural-Immune Interaction, Novel Diagnostics, Novel Therapeutics, Stem Cell Biology, Transmissable Encephalopathies/Prion, Vaccine Development, Viral Genomics, Viral Neurooncology, Viral Neurochemistry, Viral Neuroimmunology, Viral Neuropharmacology.