Soo Hee Lee, Kyeong-Eon Park, Kibaek Eum, Yeran Hwang, Seong-Ho Ok, Gyujin Sim, Dumidu Perera, Henri K M Ravald, Youngho Park, Susanne K Wiedmer, Ju-Tae Sohn
{"title":"Effect of lipid emulsion on vasoconstriction induced by epinephrine or norepinephrine in isolated rat aorta.","authors":"Soo Hee Lee, Kyeong-Eon Park, Kibaek Eum, Yeran Hwang, Seong-Ho Ok, Gyujin Sim, Dumidu Perera, Henri K M Ravald, Youngho Park, Susanne K Wiedmer, Ju-Tae Sohn","doi":"10.4097/kja.24093","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Epinephrine (EPI) or norepinephrine (NOR) is widely used to treat cardiovascular collapse during lipid emulsion (LE) resuscitation for drug toxicity. However, the effect of LE on the vasoconstriction caused by EPI or NOR remains unknown. The purpose of this study was to examine the effect of an LE (Intralipid) on the vasoconstriction caused by EPI and NOR in isolated rat aorta.</p><p><strong>Methods: </strong>The effect of LE on the vasoconstriction caused by EPI or NOR in isolated rat aorta was examined. Additionally, the effect of LE on the calcium increase caused by EPI or NOR was investigated. The distribution constant (KD: lipid to aqueous phase) of EPI or NOR between a LE (1%) and an aqueous phase was determined.</p><p><strong>Results: </strong>LE (1 and 2%) did not significantly alter vasoconstriction caused by EPI or NOR in isolated endothelium-intact aorta. Moreover, the LE did not significantly alter the increased calcium level caused by EPI or NOR. The log KD of EPI in the LE (1%) was -0.71, -0.99, and -1.00 at 20, 50, and 100 mM ionic strength, respectively. The log KD of NOR in the LE (1%) was -1.22, -1.25, and -0.96 at 20, 50, and 100 mM ionic strength, respectively.</p><p><strong>Conclusions: </strong>Taken together, the Intralipid emulsion did not alter vasoconstriction induced by EPI or NOR that seems to be due to the hydrophilicity of EPI or NOR, leading to sustained hemodynamic support produced by EPI or NOR used during LE resuscitation.</p>","PeriodicalId":17855,"journal":{"name":"Korean Journal of Anesthesiology","volume":" ","pages":"555-564"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467498/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Anesthesiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4097/kja.24093","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Epinephrine (EPI) or norepinephrine (NOR) is widely used to treat cardiovascular collapse during lipid emulsion (LE) resuscitation for drug toxicity. However, the effect of LE on the vasoconstriction caused by EPI or NOR remains unknown. The purpose of this study was to examine the effect of an LE (Intralipid) on the vasoconstriction caused by EPI and NOR in isolated rat aorta.
Methods: The effect of LE on the vasoconstriction caused by EPI or NOR in isolated rat aorta was examined. Additionally, the effect of LE on the calcium increase caused by EPI or NOR was investigated. The distribution constant (KD: lipid to aqueous phase) of EPI or NOR between a LE (1%) and an aqueous phase was determined.
Results: LE (1 and 2%) did not significantly alter vasoconstriction caused by EPI or NOR in isolated endothelium-intact aorta. Moreover, the LE did not significantly alter the increased calcium level caused by EPI or NOR. The log KD of EPI in the LE (1%) was -0.71, -0.99, and -1.00 at 20, 50, and 100 mM ionic strength, respectively. The log KD of NOR in the LE (1%) was -1.22, -1.25, and -0.96 at 20, 50, and 100 mM ionic strength, respectively.
Conclusions: Taken together, the Intralipid emulsion did not alter vasoconstriction induced by EPI or NOR that seems to be due to the hydrophilicity of EPI or NOR, leading to sustained hemodynamic support produced by EPI or NOR used during LE resuscitation.