Xuewei Zheng , ShunShun Zhang , HaoDi Ma , Yirui Dong , Jiayu Zheng , Li Zeng , Jiangbo Liu , Yanzhenzi Dai , Qinan Yin
{"title":"Replenishment of TCA cycle intermediates and long-noncoding RNAs regulation in breast cancer","authors":"Xuewei Zheng , ShunShun Zhang , HaoDi Ma , Yirui Dong , Jiayu Zheng , Li Zeng , Jiangbo Liu , Yanzhenzi Dai , Qinan Yin","doi":"10.1016/j.mce.2024.112321","DOIUrl":null,"url":null,"abstract":"<div><p>The tricarboxylic acid (TCA) cycle is an essential interface that coordinates cellular metabolism and is as a primary route determining the fate of a variety of fuel sources, including glucose, fatty acid and glutamate. The crosstalk of nutrients replenished TCA cycle regulates breast cancer (BC) progression by changing substrate levels-induced epigenetic alterations, especially the methylation, acetylation, succinylation and lactylation. Long non-coding RNAs (lncRNA) have dual roles in inhibiting or promoting energy reprogramming, and so altering the metabolic flux of fuel sources to the TCA cycle, which may regulate epigenetic modifications at the cellular level of BC. This narrative review discussed the central role of the TCA cycle in interconnecting numerous fuels and the induced epigenetic modifications, and the underlying regulatory mechanisms of lncRNAs in BC.</p></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303720724001771","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The tricarboxylic acid (TCA) cycle is an essential interface that coordinates cellular metabolism and is as a primary route determining the fate of a variety of fuel sources, including glucose, fatty acid and glutamate. The crosstalk of nutrients replenished TCA cycle regulates breast cancer (BC) progression by changing substrate levels-induced epigenetic alterations, especially the methylation, acetylation, succinylation and lactylation. Long non-coding RNAs (lncRNA) have dual roles in inhibiting or promoting energy reprogramming, and so altering the metabolic flux of fuel sources to the TCA cycle, which may regulate epigenetic modifications at the cellular level of BC. This narrative review discussed the central role of the TCA cycle in interconnecting numerous fuels and the induced epigenetic modifications, and the underlying regulatory mechanisms of lncRNAs in BC.
期刊介绍:
Molecular and Cellular Endocrinology was established in 1974 to meet the demand for integrated publication on all aspects related to the genetic and biochemical effects, synthesis and secretions of extracellular signals (hormones, neurotransmitters, etc.) and to the understanding of cellular regulatory mechanisms involved in hormonal control.