{"title":"Design principles of multi-map variation in biological systems.","authors":"Juan F Poyatos","doi":"10.1088/1478-3975/ad5d6c","DOIUrl":null,"url":null,"abstract":"<p><p>Complexity in biology is often described using a multi-map hierarchical architecture, where the genotype, representing the encoded information, is mapped to the functional level, known as the phenotype, which is then connected to a latent phenotype we refer to as fitness. This underlying architecture governs the processes driving evolution. Furthermore, natural selection, along with other neutral forces, can, in turn, modify these maps. At each level, variation is observed. Here, I propose the need to establish principles that can aid in understanding the transformation of variation within this multi-map architecture. Specifically, I will introduce three, related to the presence of modulators, constraints, and the modular channeling of variation. By comprehending these design principles in various biological systems, we can gain better insights into the mechanisms underlying these maps and how they ultimately contribute to evolutionary dynamics.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ad5d6c","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Complexity in biology is often described using a multi-map hierarchical architecture, where the genotype, representing the encoded information, is mapped to the functional level, known as the phenotype, which is then connected to a latent phenotype we refer to as fitness. This underlying architecture governs the processes driving evolution. Furthermore, natural selection, along with other neutral forces, can, in turn, modify these maps. At each level, variation is observed. Here, I propose the need to establish principles that can aid in understanding the transformation of variation within this multi-map architecture. Specifically, I will introduce three, related to the presence of modulators, constraints, and the modular channeling of variation. By comprehending these design principles in various biological systems, we can gain better insights into the mechanisms underlying these maps and how they ultimately contribute to evolutionary dynamics.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.