Minimal Common Oncology Data Elements Genomics Pilot Project: Enhancing Oncology Research Through Electronic Health Record Interoperability at Vanderbilt University Medical Center.

IF 3.3 Q2 ONCOLOGY JCO Clinical Cancer Informatics Pub Date : 2024-06-01 DOI:10.1200/CCI.23.00249
Yanwei Li, Jiarong Ye, Yuxin Huang, Jiayi Wu, Xiaohan Liu, Shun Ahmed, Travis Osterman
{"title":"Minimal Common Oncology Data Elements Genomics Pilot Project: Enhancing Oncology Research Through Electronic Health Record Interoperability at Vanderbilt University Medical Center.","authors":"Yanwei Li, Jiarong Ye, Yuxin Huang, Jiayi Wu, Xiaohan Liu, Shun Ahmed, Travis Osterman","doi":"10.1200/CCI.23.00249","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The expanding presence of the electronic health record (EHR) underscores the necessity for improved interoperability. To test the interoperability within the field of oncology research, our team at Vanderbilt University Medical Center (VUMC) enabled our Epic-based EHR to be compatible with the Minimal Common Oncology Data Elements (mCODE), which is a Fast Healthcare Interoperability Resources (FHIR)-based consensus data standard created to facilitate the transmission of EHRs for patients with cancer.</p><p><strong>Methods: </strong>Our approach used an extract, transform, load tool for converting EHR data from the VUMC Epic Clarity database into mCODE-compatible profiles. We established a sandbox environment on Microsoft Azure for data migration, deployed a FHIR server to handle application programming interface (API) requests, and mapped VUMC data to align with mCODE structures. In addition, we constructed a web application to demonstrate the practical use of mCODE profiles in health care.</p><p><strong>Results: </strong>We developed an end-to-end pipeline that converted EHR data into mCODE-compliant profiles, as well as a web application that visualizes genomic data and provides cancer risk assessments. Despite the complexities of aligning traditional EHR databases with mCODE standards and the limitations of FHIR APIs in supporting advanced statistical methodologies, this project successfully demonstrates the practical integration of mCODE standards into existing health care infrastructures.</p><p><strong>Conclusion: </strong>This study provides a proof of concept for the interoperability of mCODE within a major health care institution's EHR system, highlighting both the potential and the current limitations of FHIR APIs in supporting complex data analysis for oncology research.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"8 ","pages":"e2300249"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.23.00249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The expanding presence of the electronic health record (EHR) underscores the necessity for improved interoperability. To test the interoperability within the field of oncology research, our team at Vanderbilt University Medical Center (VUMC) enabled our Epic-based EHR to be compatible with the Minimal Common Oncology Data Elements (mCODE), which is a Fast Healthcare Interoperability Resources (FHIR)-based consensus data standard created to facilitate the transmission of EHRs for patients with cancer.

Methods: Our approach used an extract, transform, load tool for converting EHR data from the VUMC Epic Clarity database into mCODE-compatible profiles. We established a sandbox environment on Microsoft Azure for data migration, deployed a FHIR server to handle application programming interface (API) requests, and mapped VUMC data to align with mCODE structures. In addition, we constructed a web application to demonstrate the practical use of mCODE profiles in health care.

Results: We developed an end-to-end pipeline that converted EHR data into mCODE-compliant profiles, as well as a web application that visualizes genomic data and provides cancer risk assessments. Despite the complexities of aligning traditional EHR databases with mCODE standards and the limitations of FHIR APIs in supporting advanced statistical methodologies, this project successfully demonstrates the practical integration of mCODE standards into existing health care infrastructures.

Conclusion: This study provides a proof of concept for the interoperability of mCODE within a major health care institution's EHR system, highlighting both the potential and the current limitations of FHIR APIs in supporting complex data analysis for oncology research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最小通用肿瘤数据元素基因组学试点项目:范德比尔特大学医学中心通过电子健康记录互操作性加强肿瘤学研究。
目的:电子病历(EHR)的应用范围不断扩大,凸显了提高互操作性的必要性。为了测试肿瘤学研究领域的互操作性,我们范德比尔特大学医学中心(VUMC)的团队使我们基于 Epic 的电子病历与最小通用肿瘤学数据元素(mCODE)兼容,后者是基于快速医疗互操作性资源(FHIR)的共识数据标准,旨在促进癌症患者电子病历的传输:我们的方法是使用一种提取、转换、加载工具,将 VUMC Epic Clarity 数据库中的电子病历数据转换为与 mCODE 兼容的配置文件。我们在 Microsoft Azure 上建立了一个用于数据迁移的沙盒环境,部署了一个 FHIR 服务器来处理应用编程接口(API)请求,并映射 VUMC 数据以与 mCODE 结构保持一致。此外,我们还构建了一个网络应用程序,以演示 mCODE 配置文件在医疗保健领域的实际应用:我们开发了一个端到端的管道,可将电子病历数据转换成符合 mCODE 标准的档案,还开发了一个网络应用程序,可将基因组数据可视化并提供癌症风险评估。尽管将传统的电子病历数据库与 mCODE 标准相匹配非常复杂,而且 FHIR API 在支持高级统计方法方面存在局限性,但该项目成功地展示了将 mCODE 标准实际整合到现有医疗基础设施中的可行性:本研究为 mCODE 在一家大型医疗机构的 EHR 系统中的互操作性提供了概念验证,突出了 FHIR API 在支持肿瘤研究复杂数据分析方面的潜力和当前局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
期刊最新文献
Development, Validation, and Clinical Utility of Electronic Patient-Reported Outcome Measure-Enhanced Prediction Models for Overall Survival in Patients With Advanced Non-Small Cell Lung Cancer Receiving Immunotherapy. Metastatic Versus Localized Disease as Inclusion Criteria That Can Be Automatically Extracted From Randomized Controlled Trials Using Natural Language Processing. Identifying Oncology Patients at High Risk for Potentially Preventable Emergency Department Visits Using a Novel Definition. Use of Patient-Reported Outcomes in Risk Prediction Model Development to Support Cancer Care Delivery: A Scoping Review. Optimizing End Points for Phase III Cancer Trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1